
CS322:Big Data

Final Class Project Report

Project (FPL Analytics / YACS coding): YACS coding
Date: 8th December 2020

SNo Name SRN Class/Section
1 DARSHAN D PES1201801456 C
2 KARAN KUMAR G PES1201801883 H
3 MAYUR PESHVE PES1201801439 E
4 MANU M BHAT PES1201801452 B



Introduction
YACS is a centralized scheduling framework, consisting of one Master, which runs on a
dedicated machine and manages the resources of the rest of the machines in the
cluster. The other machines in the cluster each have one Worker process running on
them.

The Master process receives job requests, which are scheduled on multiple slots across
available worker machines. The Master and the Workers communicate to share
information about task completion.

In this project, we simulate the functioning of YACS. We run the Master and the Worker
processes on the same machine. Task execution is simulated by decrementing times for
each of the tasks.

Related work
Any background study material that you may have read and referenced

● Concepts of Socket communication: We referred a few online resources to
understand the basic concepts of socket programming in Python, its working
and implementation. We referred to the documentation of the ‘socket’ python
library for syntax to listen and write via specified ports in our program. This was
necessary to simulate the communications received and sent by the Master and
Workers.

Link to documentation: https://docs.python.org/3/howto/sockets.html

● Concepts of threading: We thoroughly understood the basic concepts about
threads and their execution in an Operating System. We understood the need
for threads to simulate the execution of multiple operations on a single machine.
We referred to the ‘threading’ python library via the official documentation. We
also had to figure out the prevention of race conditions using the concept of
thread locks which were available in the aforementioned library itself.

Link to documentation: https://docs.python.org/3/library/threading.html

● Concepts of logging: We discovered and utilised the ‘logging’ python library to
carry out the logging process. Instead of manually writing text into a file, we

https://docs.python.org/3/howto/sockets.html
https://docs.python.org/3/library/threading.html


made use of the functionalities provided in this library to make a clean and
informative log file.

Link to documentation: https://docs.python.org/3/howto/logging.html

● Concepts of Signals in Operating System: We used the ‘signal’ library in python
to execute signals to successfully close the sockets and end all processes
completely.

Link to documentation: https://docs.python.org/3/library/signal.html

Apart from these python libraries, we did not have to do any other background study.
The concepts of scheduling and Master/Worker flow of working was already known.

Design
Talk about the design of the system, algorithms used, and models implemented. Block
diagrams are preferred wherever applicable.

There are two python programs - master.py and worker.py which perform the functions
of the Master and a Worker machine respectively. These programs are independent of
each other and can run on separate machines too if required.

https://docs.python.org/3/howto/logging.html
https://docs.python.org/3/library/signal.html


master.py :

This program essentially consists of 4 separate threads to carry out the following tasks:

1. JobListener: Listens to job requests
2. JobScheduler: Starts a job and schedules its map tasks on the workers
3. ReduceTaskScheduler: Schedules the reduce tasks on the workers
4. WorkerManager: Listens to job completion updates from the workers

It also contains the implementation of the 3 scheduling algorithms (Random,
Round-Robin and Least Loaded).

Inside the JobListener, it does the following tasks in order :

● Listen to incoming job requests through specified port (in this case, port 5000)
● Initially append only the map tasks into the Map tasks queue.

Inside the JobScheduler, it does the following tasks in order :

● Run the scheduler function to determine workers to allot map tasks to. Then
send the current task information to the allotted Worker.

● Update new allotment information by calling Scheduler function again. Repeat
until all map tasks are allotted to Workers.

● If there are no free slots available in any of the workers (as returned from the
Scheduler function), make the Master wait for 1 second, before it again tries to
find if any slots become free.

Inside the ReduceTaskScheduler, it does the following tasks in order :

● Run the scheduler function to determine workers to allot reduce tasks to. Then
send the current task information to the allotted Worker.

● Update new allotment information by calling Scheduler function again. Repeat
until all the reduce tasks are allotted to Workers.



● If there are no free slots available in any of the workers (as returned from the
Scheduler function), make the Master wait for 1 second, before it again tries to
find if any slots become free.

The WorkerManager thread does the following tasks in order :

● Listen to workers regarding updates about task completions. Update related
information accordingly (increase free slot count, reduce the count of tasks to be
allocated)

● If all the map tasks of a job are completed, only then append the corresponding
reduce tasks of the same job to the reduce tasks queue, which can then be
scheduled. This way we preserve the task dependency criteria.

● If the final reduce task is finished, then that particular job is completed and
appropriately logged.

All the important events with corresponding timestamps logged are as follows :

● Binding sockets to setup communication between master and
job-requests-sender, master and worker

● Scheduler type for analysis reference
● When no slots in worker machines are free
● Starting a new job
● Sending and receiving task information to and from Workers
● Ending a job

worker.py :

This program simulates the working of Worker machines (each one of them). The same
program is run multiple times simultaneously to simulate the simultaneous running of
multiple Worker machines.

This program essentially listens to the job allocation information from the master (on
one thread, with a specified port number), simulates the execution of these tasks by
decrementing the task duration and sleeping for 1 second (on a second thread).
Meanwhile, it continues to listen to the Master (on the other thread), while each of the
slots continue executing their tasks.

Each of the workers’ logs events into its log file. It logs the following information :



● Starting a map/reduce task and recording the timestamp
● Ending a map/reduce task and recording the timestamp

Results
Discuss the results you got. What inferences could you draw from the results? Was any
result unexpected? Any fine-tuning done to parameters so that the results changed?

The task and job execution times shed light on the type of scheduling algorithm used.
These tests were run with 3 worker machines with 3, 7 and 9 slots respectively, for 30
job requests. Below are the mean and median job and task completion times :



Following are the observations :

● Least Loaded scheduling algorithm has the least mean job completion time.
● The job completion times for Random scheduling vary, highlighting the random

nature of this type of scheduling
● The Round Robin scheduling algorithm generally takes the longest time to finish

job execution.
● Task execution times are determined in the requests.py and are as exactly as

they are sent over the jobs requests. As was specified, all tasks have their
execution times between 0 and 5. The mean lies in this range as can be seen in
the graphs. Thus this is justified.



Random Scheduling

● Worker 3 with the highest number of slots(9) executed the most number of
tasks, followed by Worker 2(7 slots) and Worker 1(3 slots)

Least Loaded Round Robin

● In Least Loaded, tasks are first allotted to Worker 3, followed by Worker 2 and
then Worker 1. Eventually, worker 3 has the most tasks allotted and worker 1,
the least.



● The Round-Robin scheduling graph is very similar to that of Random
scheduling. For a large number of tasks, Round-Robin technique and Random
scheduling become very similar.

Least Loaded :

Observation: Machine 3 becomes darker first then 2 followed by 1. The time at which 2
starts becoming darker is when 3 and 2 have the same number of tasks.



The shades are usually always descending with respect to the darkness of the shade.
Few exceptions are because of logging and plotting at discrete time values and not
continuous values.

Random :



Round Robin :

Observation: All machines become darker simultaneously at the same pace but later
differ due to differing number of slots

Usually, all colour shades are similar as all machines get an equal chance. the
difference is because of the different maximum number of slots



Problems
Mention problems faced and how were they solved

● We faced some issues with respect to the design of our model. Initially, we
implemented just two threads to implement the master.py. However later we
realised the requirement for 4 different threads to separately carry out different
tasks so as to increase the efficiency and the throughput of our design.

● We had to put thread-locks specifically for only those variables which were
shared between threads, and not entire functions implementing the threads.

● Sockets by default would allow only one simultaneous connection while
listening. We had to increase this to match the number of workers and slots we
had and ensure no information or packets are lost due to bounded buffering.

Conclusion
What was your main learning from this project?

● Scheduling algorithms
● Working with Sockets and Threads
● Handling the critical section problem while working with multiple threads
● Importance of distribution of workflow into multiple machines, especially in

cases of handling very large quantities of data and the necessity of a
Master-Worker architecture to implement this execution.

● Nature of job handling by the Master and ways to efficiently implement this.

EVALUATIONS:

SNo Name SRN Contribution (Individual)
1 DARSHAN D PES1201801456 10
2 KARAN KUMAR G PES1201801883 10
3 MAYUR PESHVE PES1201801439 10
4 MANU M BHAT PES1201801452 10



(Leave this for the faculty)

Date Evaluator Comments Score

CHECKLIST:

SNo Item Status
1. Source code documented Done
2. Source code uploaded to GitHub – (access

link for the same, to be added in status )
https://github.com/Spielerr/
Big_Data_YACS

3. Instructions for building and running the
code. Your code must be usable out of the
box.

Done (in the README)


