
Dissertation on

“Automated Parallelization of Source Code using Program
Comprehension”

Submitted in partial fulfilment of the requirements for the award of degree of

Bachelor of Technology
in

Computer Science & Engineering

UE18CS390B – Capstone Project Phase - 2

Submitted by:

Darshan D
Karan Kumar G
Manu M Bhat
Mayur Peshve

PES1201801456
PES1201801883
PES1201801452
PES1201801439

Under the guidance of

Prof. N S Kumar
Visiting Faculty
PES University

June - December 2021

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
FACULTY OF ENGINEERING

PES UNIVERSITY
(Established under Karnataka Act No. 16 of 2013)

100ft Ring Road, Bengaluru – 560 085, Karnataka, India

PES UNIVERSITY
(Established under Karnataka Act No. 16 of 2013)

100ft Ring Road, Bengaluru – 560 085, Karnataka, India

FACULTY OF ENGINEERING

CERTIFICATE
This is to certify that the dissertation entitled

‘Automated Parallelization of Source Code using Program Comprehension’

is a bonafide work carried out by

Darshan D
Karan Kumar G
Manu M Bhat
Mayur P L

PES1201801456
PES1201801883
PES1201801452
PES1201801439

in partial fulfilment for the completion of seventh semester Capstone Project Phase - 2
(UE18CS390B) in the Program of Study - Bachelor of Technology in Computer Science and
Engineering under rules and regulations of PES University, Bengaluru during the period June -
December 2021. It is certified that all corrections / suggestions indicated for internal assessment
have been incorporated in the report. The dissertation has been approved as it satisfies the 7th
semester academic requirements in respect of project work.

Signature
N S Kumar

Visiting Faculty

Signature
Dr. Shylaja S S
Chairperson

Signature
Dr. B K Keshavan
Dean of Faculty

External Viva

Name of the Examiners

1. __________________________

2. __________________________

Signature with Date

DECLARATION

We hereby declare that the Capstone Project Phase - 2 entitled “Automated

Parallelization of Source Code using Program Comprehension” has been carried

out by us under the guidance of Prof. N S Kumar, Visiting Professor and submitted in

partial fulfilment of the course requirements for the award of degree of Bachelor of

Technology in Computer Science and Engineering of PES University, Bengaluru

during the academic semester June - December 2021. The matter embodied in this

report has not been submitted to any other university or institution for the award of

any degree.

PES1201801456 Darshan D

PES1201801883 Karan Kumar G

PES1201801452 Manu M Bhat

PES1201801439 Mayur P L

ACKNOWLEDGEMENT

We would like to express our gratitude to Prof. N S Kumar, Department of Computer Science and

Engineering, PES University, for his continuous guidance, assistance, and encouragement

throughout the development of this UE18CS390B - Capstone Project Phase – 2.

We are grateful to the project coordinator, Prof. Silviya Nancy J, for organizing, managing, and

helping with the entire process.

We take this opportunity to thank Dr. Shylaja S S, Chairperson, Department of Computer

Science and Engineering, PES University, for all the knowledge and support we have received

from the department. We would like to thank Dr. B.K. Keshavan, Dean of Faculty, PES

University for his help.

We are deeply grateful to Dr. M. R. Doreswamy, Chancellor, PES University, Prof. Jawahar

Doreswamy, Pro Chancellor – PES University, Dr. Suryaprasad J, Vice-Chancellor, PES

University for providing us various opportunities and enlightenment every step of the way.

Finally, this project could not have been completed without the continual support and

encouragement we have received from our family and friends.

Abstract

With the diminishing rise of computational capacity of hardware resources available in today’s

world, it is imperative to make efficient use of available computational power to achieve better

optimisations and faster execution times to improve cost-effectiveness. There is a need to utilise

multiple resources simultaneously to achieve parallel execution. This requires software to be

written by developers in such a way as to run parallely on multiple resources. However,

designing code to achieve parallelism is not an easy task and requires skilled developers for the

same. Automating the process of converting sequential to its parallel equivalent source code

helps overcome the dependency on human expertise and saves valuable time. We propose such

an automated solution targeting all types of generic sequential code, which converts it to its

accurate parallel version, capable of utilising all of the hardware resources available in the

underlying system. We do so by integrating multiple techniques to cover various cases of source

code. We analyse sections of source code to understand the intent and correspondingly replace it

with an optimized version. We also employ a scheduling algorithm to achieve fine grained

control over execution of multiple sections of code, thereby maximising efficient usage and

minimising execution times.

Table of contents

1. Introduction 1
2. Problem Statement 2
3. Literature Survey 4

3.1. Program Comprehension for parallelisation 4
3.1.1. Pasquale Cantiello and Beniamino Di Martino, Automatic Source Code

Transformation for GPUs Based on Program Comprehension, 2012. 4
3.1.1.1. Introduction: 4
3.1.1.2. Implementation: 4
3.1.1.3. Conclusion: 5

3.1.2. Martino B. D. & Iannello G, Towards automated code parallelization through
program comprehension, 1994. 6

3.1.2.1. Introduction: 6
3.1.2.2. Implementation: 6
3.1.2.3. Conclusion: 7

3.1.3. Di Martino B & Iannello G, PAP Recognizer: a tool for automatic
recognition of parallelizable patterns, 1996. 7

3.1.3.1. Introduction 7
3.1.3.2. Implementation 7
3.1.3.3. Conclusion 8

3.1.4. Di Martino B & Kessler C.W, Two program comprehension tools for
automatic parallelization, 2000. 8

3.1.4.1. Introduction 8
3.1.4.2. Implementation 9
3.1.4.3. Conclusion 9

3.2. Parallelisation techniques 10
3.2.1. Peter Kraft, Amos Waterland, Daniel Y Fu Anitha Gollamudi, Shai

Szulanski, Margo Seltzer, Automatic Parallelisation of Sequential programs,
2018 10

3.2.1.1. Introduction 10
3.2.1.2. Implementation 10
3.2.1.3. Conclusion 10

3.2.2. Cristian Ramon-Cortes, Ramon Amela, Jorge Ejarque, Philippe Clauss, Rosa
M. Badia, AutoParallel: A Python module for automatic parallelization and
distributed execution of affine loop nests, 2018. 11

3.2.2.1. Introduction 11
3.2.2.2. Implementation 11
3.2.2.3. Conclusion 11

3.3. Automated tools for parallelisation 13
3.3.1. Pluto: Uday Bondhugula, J. Ramanujam, P. Sadayappan, PLuTo: A Practical

and Fully Automatic Polyhedral Program Optimization System, 2007. 13
3.3.1.1. Introduction 13
3.3.1.2. Implementation 13
3.3.1.3. Conclusion 13

3.3.2. ParaWise – Widening Accessibility to Efficient and Scalable Parallel Code
(White Paper), 2004. 14

3.3.2.1. Introduction 14
3.3.2.2. Implementation 14
3.3.2.3. Conclusion 15

3.3.3. Idan Mosseri, Lee-or Alon, Re’em Harel, and Gal Oren, ComPar: Optimized
Multi-Compiler for Automatic OpenMP S2S Parallelization, 2020. 15

3.3.3.1. Introduction 15
3.3.3.2. Implementation 15
3.3.3.3. Conclusion 16

3.3.4. Hamid Arabnejad, João Bispo, Jorge G. Barbosa, João M.P. Cardoso,
AutoPar-Clava: An Automatic Parallelization source-to-source tool for C
code applications, 2018. 17

3.3.5. A Review of Parallelization Tools and Introduction to Easypar 17
3.3.5.1. Introduction: 17

3.3.5.1.1. Based on Parallelization stage: 17
3.3.5.1.2. Based on era: 17
3.3.5.1.3. Based on Graphical Assistance Tools: 18

3.3.5.2. Tools Described: 18
3.3.5.2.1. First Generation Tools: 18
3.3.5.2.2. Second Generation Tools: 18

3.3.5.3. Conclusion: 19
3.4. AST Generation and Querying 20

3.4.1. Rose 20
3.4.2. Clava/Lara 20

João Bispo, João M.P. Cardoso, Clava: C/C++ Source-to-Source compilation
using LARA, 2020. 20

3.4.2.1. Introduction 20
3.4.2.2. Implementation 21
3.4.2.3. Conclusion 21

3.5. Functional parallelism 22
3.5.1. Sean Rul, Hans Vandierendonck, Koen De Bosschere, Function Level

Parallelism Driven by Data Dependencies, 2007. 22
3.5.1.1. Introduction 22
3.5.1.2. Implementation 22
3.5.1.3. Conclusion 25

3.6. Parallel programming libraries 27
3.6.1. OpenMP 27
3.6.2. Pthreads 27

3.7. Vector Representation of Source Code 31
3.7.1. code2vec: Learning Distributed Representations of Code 31

3.7.1.1. Introduction 31
3.7.1.2. Implementation 31
3.7.1.3. Conclusion 32

3.7.2. A Novel Neural Source Code Representation based on Abstract Syntax Tree 32
3.7.2.1. Introduction 32
3.7.2.2. Implementation 33
3.7.2.3. Conclusion 33

4. Product Requirements Specification 34
4.1. Introduction 34
4.2. Project Scope 34
4.3. Product Perspective 36
4.4. Product Features 37
4.5. Operating Environment 37
4.6. General Constraints, Assumptions and Dependencies 37
4.7. Risks 38
4.8. Functional Requirements 38
4.9. External Interface Requirements 40

4.9.1. User Interfaces 40
4.9.2. Hardware Requirements 40
4.9.3. Software Requirements 41

4.9.3.1. GCC/G++ 41
4.9.3.2. CLAVA/LARA 41
4.9.3.3. Python 41
4.9.3.4. OpenMP 41
4.9.3.5. Pthreads 41

4.10. Non-Functional Requirements 42
4.10.1. Performance Requirement 42
4.10.2. Safety Requirements 43
4.10.3. Security Requirements 43

5. System Design 44
5.1. Introduction 44
5.2. Current System 45
5.3. Design Details 46

5.3.1. Novelty 47
5.3.2. Innovativeness 48
5.3.3. Interoperability 48
5.3.4. Performance 48
5.3.5. Security 49
5.3.6. Reliability 49
5.3.7. Maintainability 49
5.3.8. Legacy to modernization 50
5.3.9. Reusability 50
5.3.10. Application compatibility 50
5.3.11. Resource utilization 50

6. Implementation and Pseudo Code 51
6.1. Parallelization Phase 52

6.1.1. Method 1: Inter and Intra-Function Parallelism by AST Querying and replacement
with OpenMP Directives 52

6.1.1.1. Details about the approach 52
6.1.1.2. Inferences from Method 1 57

6.1.2. Method 2: Naive Thread Scheduling using C++ concepts of Promises and Futures 58
6.1.2.1. Details about the approach 58
6.1.2.2. Inferences from Method 2 62

6.1.3. Method 3: Optimised Thread Scheduling for Functions using Master-Worker based
approach to achieve Functional Parallelism 63

6.1.3.1. Details about the approach: 63
6.1.3.2. Inferences from Method 3 69

6.1.4. Method-4: Optimised Thread Scheduling for Functions using Non Master-Worker
based approach to achieve Functional Parallelism 70

6.1.4.1. Implementation Details 70
6.1.4.2. Results 76
6.1.4.3. Inferences of Method 4 81

6.2. Program Comprehension Phase 82
6.3. Additional Steps 86

7. Conclusion 88
7.1. Parallelization 88
7.2. Program Comprehension 88

8. Future Work 90

Appendix A: Definitions, Acronyms and Abbreviations 91

List of Figures

1. Working Pipeline of Parallelisation tool 5
2. Working Pipeline of PAP Recogniser 7
3. Working of ROSE Compiler 20
4. Working of CLAVA 21
5. A Call Graph from data-dependency analysis 23
6. Memory Dependencies 23
7. Interfunctional data flow graph 24
8. Classification of data dependencies 24
9. Data sharing graph 25
10. Speedup results of parallelized bzip2 26
11. Architecture of Path-attention neural model used in Code2Vec 32
12. Model architecture implemented in the paper 33
13. Results of Method-1 on i7 9th gen 54
14. Method-1 implementation 57
15. Method-2 implementation 62
16. Results of Method-3 on i5 4th gen 67
17. Results of Method-3 on i7 9th gen 67
18. Results of Method-3 on i9 10th gen 68
19. Comparison of execution times of Sequential vs Parallel program across multiple CPU

Architectures 68
20. Method 3 implementation 69
21. Method 4 Implementation 74
22. Ratio of Sequential execution times to Parallel execution times 78

(Hardware setup : Core i5 - 2nd gen - 2 core machine)
23. Ratio of Sequential execution times to Parallel execution times 79

(Hardware setup : Core i7 - 9th gen - 6 core machine)
24. Comparison of execution times of Method-3 vs Method-4 80

(Hardware setup : Core i5 - 2nd gen - 2 core machine)
25. Comparison of execution times of Method-3 vs Method-4 81

(Hardware setup : Core i7 - 9th gen - 6 core machine)
26. Program Comprehension Implementation 84

“Automated Parallelization of Source Code using Program Comprehension”

__

1. Introduction

In the earlier days, there was very little computational power that could be provided by the

processors on a computer system. Software was written sequentially, which meant every instruction

was executed one by one. This meant large softwares took a very long time to execute.

But there was an exponential boom in the development of computer hardware, with faster and more

powerful processors coming into the market. The clock speed drastically increased which enabled

more instructions to be executed in very short durations of time. However, this continuous increase

in power and computational capacity was cut short a few years ago. This meant that ever increasing

need for more and more computational power could no longer rely on developing hardware. We had

to shift focus to the software side, to make intelligent and efficient use of available hardware.

Parallel computing is a paradigm which enables us to make efficient use of available hardware to

run multiple instructions on multiple hardware resources, simultaneously. This could mean running

separate tasks on multiple cores/threads available on a single system, or running separate tasks on

multiple systems connected in a cluster. This enables us to execute our software faster and saves

valuable time in several use cases, thereby improving cost-effectiveness. Thus, we propose a novel

approach to solve the problem of automated parallelisation of sequential code, by using multiple

techniques integrated into one package to convert any general sequential source code to its parallel

equivalent source code without any human intervention. We achieve this primarily by using the

concepts of Program comprehension and Task-level parallelism. Program Comprehension enables

us to identify intent and algorithm implemented in a code section and consequently replace the

same with its optimised parallel version as is defined in a backend database. Task-level parallelism

enables us to execute different functions in a given source code in parallel by use of a

data-dependency driven scheduling algorithm.

DeptxofqCSE Aug - Dec 2021 Pagea1 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

2. Problem Statement

Parallel computing is a programming paradigm that enables efficient use of available hardware to

run multiple instructions on multiple hardware resources simultaneously, allowing for faster

software execution. This saves valuable time in several use cases and reduces the cost considerably.

However, a major challenge with developing programs that have parallelism is that there is a need

for highly skilled programmers. There is also the problem that parallelizing pre-existing source

code would take a large amount of manpower and time. This may not be feasible or even

affordable, depending on the size and nature of the project. Auto parallelization techniques would

help in mitigating the cost, manpower and time required for such a project. There has been

significant work done in this area, especially in recent times, that has shown promising results and

new ideas with interesting perspectives on how to go about parallelising source code.

We propose a solution that enables automated conversion of sequential source code to parallel

source code with the aid of program comprehension and our bespoke scheduling algorithm, capable

of task-level parallelization.

Existing auto-parallelisation techniques are either constrained to specific domains alone or do not

try to perform parallelisation by doing thread scheduling explicitly that would allow for

fine-grained control over the execution. We intend to use the concept of program comprehension to

assimilate the source code and use that information to parallelise based on programming paradigms.

We also intend to use a novel thread scheduling idea that would allow us to control the execution of

the client program such that we can improve the performance by using multiple threads while

reducing any overheads caused due to parallelism.

DeptxofqCSE Aug - Dec 2021 Pagea2 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

The implementation can therefore be broken down into the following:

1. Conversion of given sequential source code to an Enriched Abstract Syntax Tree

representation, which enables us to query the nodes to retrieve useful information about the

input code.

2. Data dependency, control and data flow analysis performed with the aid of the generated

AST to identify independent code sections.

3. Program comprehension to understand the programming paradigm or the intent of each

program section or function using the concept of Clustering based on program vector

embeddings.

4. Parallelisation of the eligible sections of source code, based on the identified programming

algorithm and the best fit parallel version for it.

5. Using the data dependency graph, to execute multiple sections of the entire program in

separate threads with the help of our scheduling algorithm, to maximise CPU utilisation and

minimise execution times.

DeptxofqCSE Aug - Dec 2021 Pagea3 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

3. Literature Survey
3.1. Program Comprehension for parallelisation
3.1.1. Pasquale Cantiello and Beniamino Di Martino, Automatic Source Code

Transformation for GPUs Based on Program Comprehension, 2012.

3.1.1.1. Introduction

The authors use a previously established technique of program comprehension called the

PAP Recognizer along with some modifications. This is used to improve the performance

of a program, specifically for running on GPU. The methodology used is based on

previously built upon ideas regarding program comprehension, using a static analyser.

There is an “Extractor”, which works based on Prolog facts, which is used to recognise

programming paradigms or patterns in the program. These patterns are then used to

recognise the algorithm being used. Upon recognising the algorithm, the AST is then

modified by a transformer module to transform the version which runs the same algorithm

in a parallel manner.

3.1.1.2. Implementation

The implementation of both the static analyser and the transformer module is on an AST.

This allows for the tool to abstract out the program a little more, hence makes it easier to

process and modify. The static analyzer is first run on the AST, to identify algorithms

described by different sub-trees in the AST. The algorithmic identification is done based

on hierarchical parsing, which reduces the memory usage of the identifier. After

identifying the sub-tree and the algorithm associated with it, the following steps are

carried out:

● Removal of the subtree from the AST, and original code commented.

● Generation of a new tree with the modified code which may contain the necessary

library calls and memory allocations needed for GPU processing.

● Addition of this newly generated tree at the same location as the removed subtree.

DeptxofqCSE Aug - Dec 2021 Pagea4 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Figure 1: Working pipeline of Parallelisation tool

The transformer module makes the modifications to the AST based on “Algorithm

repository” to make code better suited for running on GPU

The tool was implemented using SWI-Prolog for the analysis of AST based on rules,

while the ROSE compiler was used to extract AST and to be able to query and modify the

AST. The tool was capable of parsing C/C++ and FORTRAN 2003

3.1.1.3. Conclusion

The paper gives us insights into how program comprehension can be used to assimilate

code, using a static analyser. It also provides for an interesting approach, by using AST to

abstract out the program, allowing us to remove the personal choices of the programmers,

and only deal with the necessary details of the program. This also lays the foundation for

what can be done to perform parallelism within a small portion of the program, allowing

for possible improvements in performance in a function or a small section of code.

Currently, the tool is only built to work on basic linear algebra algorithms, as the rules for

algorithm recognition are written only for those. However, the recognition phase still takes

a lot of time and hence has scalability issues. So a performance investigation on the

transformer would possibly help improve that. The authors have ensured that there is an

extension to OpenCL, allowing for usage on heterogeneous architectures, however,

DeptxofqCSE Aug - Dec 2021 Pagea5 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

OpenCL is not used much in GPU programming anymore. They have also stated that they

are working on increasing the algorithms that will be recognised.

3.1.2. Martino B. D. & Iannello G, Towards automated code parallelization through

program comprehension, 1994.

3.1.2.1. Introduction

The authors talk about how existing tools simply try to identify loops that can be

parallelized and loops that cannot be parallelized using data flow and dependency

analysis. They discuss the “Concept Assigning Problem”. In its general form, it is

analyzing the programs to identify abstract concepts. However, the paper proposes that

this problem can have complete automation if identification is applied on programming

concepts and algorithms, such as searches, sorts, structure modification, numerical, etc.

(which are essentially algorithmic concepts)

3.1.2.2. Implementation

Defines the parallel structure of a program as Programming Paradigms (PP). There are

two PPs proposed:

● Tree computation: a set of processes that communicate with one another based on a

binary tree structure. Every problem that needs to be solved is divided into

sub-problems, which are treated as child processes. These child processes are

executed and their results are moved upward to their parents

● Master-Worker: consists of a master process and a collection of worker processes.

The worker processes carry out processes as defined by the master process.

Problems irrespective of their specific working and applications can be grouped under the

above two mentioned paradigms. For eg: the “Tree computation” paradigm can be

assigned to an iterative quicksort algorithm whereas the “Processor farm” paradigm can be

assigned to a branch-and-bound binary search problem. To recognize the paradigm itself,

the authors make use of a finite set of pattern templates (called cliches). PS defines the

Parallel Skeleton code for the selected paradigm.

DeptxofqCSE Aug - Dec 2021 Pagea6 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Figure 2: Working pipeline of PAP Recogniser

3.1.2.3. Conclusion
● This is only theoretical, a tool hasn't been devised.

● The approach is very ambitious and might not work on all generic programs

● Upon further research, the concept of cliches and paradigms as defined in the paper can be

looked into, possibly expanding the databases to further improve the generality of the tool

● This paper was before OpenMP came into existence. With the use of OpenMP, it is

possible to have better results using this same concept.

3.1.3. Di Martino B & Iannello G, PAP Recognizer: a tool for automatic recognition

of parallelizable patterns, 1996.

3.1.3.1. Introduction

The authors present a new method of analysing programs to identify certain regions,

which they call Parallelizable Algorithmic Patterns (PAP). They do so by using program

recognition based processes. The output of the tool is a web application based

representation showing the hierarchical description of the recognized patterns. The

prototype tool has been implemented in the Vienna Fortran Compilation System.

3.1.3.2. Implementation

The Automatic parallelization problem is categorised into the following requirements:

DeptxofqCSE Aug - Dec 2021 Pagea7 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

● Identification of a parallel model

● Data distribution for the defined processes

● Selection of work categorisation, enabling code decomposition

The tool mentioned is mainly driven by paradigm recognition rules working on

representation of concepts. These rules enable differentiation of multiple concepts based

on intent and meaning. These rules can be represented as abstract functions contributing to

building an abstract structure. Control and data dependency analysis are implemented as

an abstract process.

The tool analyses the program by making use of control flow and data flow to develop

some kind of abstract flow structure. All this information about underlying concepts are

stored as dependency graphs in a datastore. This datastore is updated as the identifier

parses the entire program.

3.1.3.3. Conclusion

The PAP Recognizer introduced in this paper is capable of recognizing some features

related to numerical computation only. It would be challenging to introduce new concepts

that are compatible with the design of this tool. Hence generalization would be an uphill

task.

3.1.4. Di Martino B & Kessler C.W, Two program comprehension tools for

automatic parallelization, 2000.

3.1.4.1. Introduction
● Program comprehension is identification of abstract concepts in a program

● This could mean finding sequences of code implementing some algorithmic concept

● This is challenging because of syntactic variation, algorithmic variation, delocalization,

and overlapping implementations.

● Why do program comprehension for automatic parallelization?

○ It provides for an aggressive code transformation, without being dependent on the

sequential structure in the program

○ The acquired knowledge allows for automatically selecting segments for optimization,

and helps improve the working of performance prediction

DeptxofqCSE Aug - Dec 2021 Pagea8 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

○ The application domain considered mainly consists of numerical computations, linear

algebra and partial differential equation codes (hence it is not exactly generalized)

● Non numerical examples - quicksort and branch-and-bound

3.1.4.2. Implementation
● PAP was implemented in the Vienna Fortran Compiler (VFC)

● PARAMAT tool provides a faster solution, whereas PAP Recognizer provides for a greater

generalization with higher run times

● Recognition of subconcepts for a given concept to identify the hierarchical concepts is

done.

● Rules to infer a concept are defined in terms of intermediate representation features like

operator symbols, equality of program objects, control and data flow information and

already computed subconcept information.

● The IR can be an annotated abstract syntax tree for which customized tree-pattern

matching techniques will be used

● It uses Concept of Interactive Parallelization - helping users with useful information

during their efforts to parallelize a program

● Another goal is to replace program parts with calls to already implemented parallel code

3.1.4.3. Conclusion

Applications are plenty with this approach of Program comprehension to parallelization.

Some of these applications are:

● Automatic Code restructuring and Library use

● Template based code transformations

● Automatic data distribution

● Automatic performance prediction

● Speculative program restructuring

● Knowledge-based support to interactive parallelization (take live inputs from users

during the parallelization process)

The authors say that they have indeed tried to integrate the two tools together to extract

the best out of the two. Their conclusion is as follows:

If recognition time is of utmost importance, PARAMAT can be used, otherwise use the

PAP tool since it offers greater flexibility.

DeptxofqCSE Aug - Dec 2021 Pagea9 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

3.2. Parallelisation techniques
3.2.1. Peter Kraft, Amos Waterland, Daniel Y Fu Anitha Gollamudi, Shai

Szulanski, Margo Seltzer, Automatic Parallelisation of Sequential programs,

2018

3.2.1.1. Introduction

The paper deals with the implementation of a previously hypothesised idea known as ASC

(Automatic Scalable Computation) architecture. In ASC, the memory state and registers

are used to create a vector. This vector is then used to predict the possible trajectory of the

program execution. This prediction is then used to continue execution. By having

simultaneous executions, when the program comes to the point at which the prediction

was made, the worker thread that was tasked to continue the execution of the correct

prediction is then used. This method uses processor farms to improve performance.

3.2.1.2. Implementation

The vector for characterising the program state is made using the memory state of the

program and registers involved, by the usage of ptrace and perf_events. This vector is then

used as input to either a neural network or a decision tree. The prediction made by the

neural net or decision tree is stored in a look-up table. Also the predicted execution is

passed to a worker thread to continue execution from the predicted point onwards. Once

the execution of the main program reaches the point of the prediction, we do a look-up on

the predicted state and match with the actual state to see which worker had the task of

executing the correct prediction. The result of the worker thread is then used, and the main

program execution skips to the point at which worker thread is executing. The paper uses

an Intel tool called “PIN”, which on the basis of dynamic analysis identifies points at

which predictions can be made.

3.2.1.3. Conclusion

The paper extensively uses PIN, however it is a very expensive tool, so improvements to

PIN would improve the performance of the tool. The paper also discusses the potential use

of other dynamic instrumentation tools like JIT with PIN and valgrind. There has been

some related work, in the area of binary parallelisation (parallelising sequential binaries to

DeptxofqCSE Aug - Dec 2021 Pagea10 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

parallel equivalent) and compiler parallelisation, including the usage of OpenMP and

other specific compilers. The tool also fails with things such as accumulators and similar

concepts.

3.2.2. Cristian Ramon-Cortes, Ramon Amela, Jorge Ejarque, Philippe Clauss, Rosa

M. Badia, AutoParallel: A Python module for automatic parallelization and

distributed execution of affine loop nests, 2018.

3.2.2.1. Introduction

The authors propose a python module for automated task-based parallelisation. This is

implemented on affine loop nests to execute them in parallel in a distributed computing

environment. This also involves construction of data blocks to identify and use task

granularity for achieving better performance in terms of execution.

3.2.2.2. Implementation
● Uses existing tools to devise a pipeline to parallelize Python code on distributed systems

● Pluto is a tool which helps in parallelizing affine loops

● COMPs is a tool which helps in converting source code to run on a distributed cluster

(similar to functionalities of MPI)

● A combination of these two is proposed (similar to a combination of OpenMP and MPI -

however, this is manual)

3.2.2.3. Conclusion
● Difference between affine and non-affine programs:

● Affine loops are the loops in which the referenced array subscripts and loop bounds are a

linear function of the loop index variables. This implies that the memory access sequence

is already noted in the compile time itself.

Example:

for (int variable = 1; variable < 12424; ++variable)

my_array[variable] = my_array[variable-1] + 9586

● In the case of non-affine loops, the memory access sequence cannot be pre-identified

during the compile time itself.

DeptxofqCSE Aug - Dec 2021 Pagea11 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Example:

for (iter=1;iter<50;++iter)

my_z[my_e[iter]] = my_z[my_t[i]] + my_z[my_p[i]]

● Most of the research has been done with respect to affine transformations as the

availability of memory access patterns at compile time helps in the development of

techniques and methods that can be used to identify the parallelizable segments easily.

● Performing parallelization for non-affine program segments can be something that can be

looked at as a possible area of research.

DeptxofqCSE Aug - Dec 2021 Pagea12 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

3.3. Automated tools for parallelisation
3.3.1. Pluto: Uday Bondhugula, J. Ramanujam, P. Sadayappan, PLuTo: A Practical

and Fully Automatic Polyhedral Program Optimization System, 2007.

3.3.1.1. Introduction

The Pluto tool is an auto-parallelisation tool that uses the ideas of polyhedral modelling

and analysis to parallelise programs using OpenMP pragma directives, along with other

techniques such as loop optimizations, tiling, loop merging etc. It was developed as a PhD

thesis by Uday Bhondugula, currently a professor at IISC Bangalore. It has been a

benchmark tool since its inception in 2007. The ideas of polyhedral analysis are deep

rooted in Integer Linear Programming, so as to be able to optimise the execution of

programs.

3.3.1.2. Implementation

The tool uses the ideas of polyhedral modelling. In polyhedral modelling, each loop is

considered a lattice point and a program forms a polyhedral. This polyhedral is then made

to undergo an affine transformation by the usage of Integer Linear Programming. By

performing these transformations, there are checks to make sure that the correctness of the

program is maintained while improving the performance of the loops being transformed.

The transformed polyhedral is then converted back into a program and made available to

users. For affine loops, the compiler applies transformations based on dependencies. For

non-affine loops, compilers may perform various other transformation techniques, such as

tiling or unrolling of loops etc. Performing the affine and non-affine transformation

converts the polyhedra into different optimised polyhedra.

3.3.1.3. Conclusion

The drawback of polyhedral analysis is the expensive nature of Integer Linear

programming. This is hence translated into the usage of Pluto itself. The tool is also very

cumbersome to install. However, with respect to loop parallelisation, the results of the tool

were accurate. Following were the restrictions we found out about the tool:

● Placement of pragma scop and pragma endscop is user-defined. Hence this step is

not fully automated

DeptxofqCSE Aug - Dec 2021 Pagea13 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

● If this section defined under pragma contains code that can all be parallelized, then it

ends up parallelizing them. However, if there is even one section of code within this

pragma section that cannot be parallelized, then even those code segments that can

be parallelized do not get parallelized (can still perform loop jamming but no

parallelization)

● Can only place one such pragma section in the entire program (otherwise issue of

redeclaration of helper variables that is automatically used by the tool internally)

● Placement of pragma requires user intervention and knowledge about parallelism

defeating the purpose of auto parallelization

● Not able to handle cases of reduction (divide and conquer cases) For example,

accumulator to sum up elements of an array

3.3.2. ParaWise – Widening Accessibility to Efficient and Scalable Parallel Code

(White Paper), 2004.

3.3.2.1. Introduction

It is a commercial paid tool, which has been in constant development for the past 20 years.

It provides a lot of features to customize the type of parallelization, number of threads,

etc., providing additional flexibility to the users.

3.3.2.2. Implementation

The white paper talks about current problems of High Performance Computing (HPC).

They analyse the requirements of users in the domain of HPC and accordingly design their

product. It also talks about the final end user and major market for HPC and categorizes

them into expert, non-expert and serial code users.

ParaWise makes use of efficient code analysis, enabling them to use OpenMP directives to

be inserted into appropriate positions, thus introducing parallelization into a serial source

code. They also experiment with Message Passing optimizations to further improve the

benefits of parallelization.

DeptxofqCSE Aug - Dec 2021 Pagea14 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

3.3.2.3. Conclusion

The tool is quite exhaustive providing state of the art features to enable parallelization.

The tool being interactive, requires users to provide valuable inputs during the process of

parallelization. Thus, it is not completely automated. It also doesn't cover all possibilities

which can be exploited to introduce parallelization.

3.3.3. Idan Mosseri, Lee-or Alon, Re’em Harel, and Gal Oren, ComPar: Optimized

Multi-Compiler for Automatic OpenMP S2S Parallelization, 2020.

3.3.3.1. Introduction
● Talks about other tools: AutoPar, Par4All, and Cetus.

● ComPar is an innovative approach to parallelization and uses a source to source multi

compiler. It utilizes code segmentation along with fusion, with the use of hyper parameters

for tuning.

● Performance is improved with no manual intervention by tuning the hyper parameters, so

as to obtain the best possible parallelised program. This is done while ensuring the validity

of the input source code.

● The results obtained for analysis are on the NAS and PolyBench benchmarks.

3.3.3.2. Implementation
● The S2S compiler working is as follows:

○ The source code is parsed into an Abstract Syntax Tree (AST)

○ The AST is analysed, so as to obtain data dependencies; which is then used to find

code segments to parallelise and the required directives for parallelization are inserted.

This is done to optimise the code. This process is repeated until convergence is

reached.

○ After convergence, the AST is then reverted back to the source code language as

necessitated.

● As of now, no automatic parallelization tool or compiler is capable of replacing

programmer insights. Human programmers still outperform compilers in this regard. This

is due to information gathering required for parallelization from an AST is difficult in

generalised scenarios. This is a major disadvantage for automatic parallelising tools.

DeptxofqCSE Aug - Dec 2021 Pagea15 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

● An example for the above being, function side effects. Also, relevant information that

plays a major role in parallelization such as the load of computation, scheduling

optimization, and available threads etc.

● The tuning of OpenMP directives to optimise performance automatically is well

established. We might not be able to work here.

● Parallelising directives of OpenMP target sections of the code separately, unlike MPI. The

sections may have different working fashions hence no unified compilation of an entire

source code with one unique Source to Source compiler can yield optimised result. Thus,

by using code segmentation, and usage of different Source to Source compilers will result

in better parallelization of the entire input source code.

3.3.3.3. Conclusion
● Despite the fact that resources required for ComPar are greater, it is compensated by better

results compared to other S2S compilers, especially ones that need tuning of

hyperparameters by an external user.

● ComPar can be accessed and viewed:

https://github.com/Scientific-Computing-Lab-NRCN/compar

● After testing several S2S compilers, the conclusion that can be drawn is that despite

individual advantages and drawbacks, none of them are superior in results compared to the

rest in all scenarios.

● The combination of all the above compilers yields the best possible optimised result,

under hyperparameters tuned for the specific input. This combination of compilers is

expensive computationally due to the sweep of the entire space of possibilities of the

hyperparameters, for each possibility the performance is estimated so as to make the best

possible optimisation.

DeptxofqCSE Aug - Dec 2021 Pagea16 of 95

https://github.com/Scientific-Computing-Lab-NRCN/compar

“Automated Parallelization of Source Code using Program Comprehension”

__

3.3.4. Hamid Arabnejad, João Bispo, Jorge G. Barbosa, João M.P. Cardoso,

AutoPar-Clava: An Automatic Parallelization source-to-source tool for C

code applications, 2018.

● Performs parallelization of loops only

● Performs Static analysis without any runtime info and any additional info from the user.

● Checks for dependencies within the candidate loops

● Checks the dependencies for static variables - Performs liveness analysis and determines

how the variables are referenced. Finds the Read, Write pattern that exists and determines if

any dependency exists

● Checks dependencies for arrays - Using array subscripts to determine if loop iterations are

independent which is done using existing methods such as GCD and Extended GCD.

● If no dependency exists, the OpenMP directive that it matches is found. Also, it categorizes

the variables according to the OpenMP classes.

● Generates code annotated with OpenMP directives.

3.3.5. A Review of Parallelization Tools and Introduction to Easypar

3.3.5.1. Introduction:

The paper is a survey of existing tools for auto-parallelization. They have classified these

tools into various categories based on the degree of automation and on the parallel

programming language. The classification is also on the following criteria:

3.3.5.1.1. Based on Parallelization stage:

"Parallelization process is a systematic process, especially automatic parallelization.

First stage of the parallelization process is parallelization identification. The code is

parsed and analyzed (static or dynamic dependency analysis) to search for the code

sections that can be executed concurrently."

3.3.5.1.2. Based on era:

The tools are classified as either First Generation Tools(FTG) or Second Generation

Tools (STG) based on when they were developed

DeptxofqCSE Aug - Dec 2021 Pagea17 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

3.3.5.1.3. Based on Graphical Assistance Tools:

This classification is based on if the tool provides a visualisation of the parallelization

phase or not.This information could reduce burden on programmers in understanding the

generated program.

3.3.5.2. Tools Described:
3.3.5.2.1. First Generation Tools:

● Automatic and Interactive parallelization

● Object Based parallel Programming assist

● Animation Choreographer

● DEEP Development Environment

● PTP-PLDT by IBM

● GRED

● VISO

● The SUIF compiler

3.3.5.2.2. Second Generation Tools:

● Alchemist

● DProf

● Prospector

● Coarse Grain Parallelization

● LoopSampler

● iPAT/OMP

● Capo

● Kremlin

● Kismet

● Cilk++

● Holistic approach for auto-parallelization

● Polaris

● SD3

● Prism

● AutoFuture

● Vector Fabrics

DeptxofqCSE Aug - Dec 2021 Pagea18 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

● Pluto

● Par4All

● Cetus

● S2P

● EasyPar

3.3.5.3. Conclusion:

The paper provides a brief overview of the work done in the past in the area of

auto-parallelization. By providing robust classifications, it renders future literature surveys

simpler. The paper also presents EasyPar as a parallelization tool that can be used to not

only generate parallel code but also to generate code to run on GPU's. The extensive

literature survey done by the authors eases the work for future work in the area, until such

a time there has been significant changes to the domain.

DeptxofqCSE Aug - Dec 2021 Pagea19 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

3.4. AST Generation and Querying
3.4.1. Rose

Rose is an open-source compiler-based tool that is compatible with multiple programming

languages such as C, C++, OpenMP, etc.

Rose tool is used for generating data dependencies, along with intermediate representations

such as Abstract Syntax Trees. It provides for compilation and decompilation processes

between high-level code and intermediary code. This tool has been used in the paper

mentioned in section 3.1.1.

Figure 3: Working of ROSE Compiler

3.4.2. Clava/Lara - João Bispo, João M.P. Cardoso, Clava: C/C++ Source-to-Source

compilation using LARA, 2020.

3.4.2.1. Introduction

Clava is a comprehensive compiler-based tool, which aims to extend the functionalities

provided by Clang. It is based on a Javascript-based language called Lara. It works on an

DeptxofqCSE Aug - Dec 2021 Pagea20 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

enriched Abstract Syntax Tree, with multiple attributes associated with each of the nodes. It

provides useful information about data and control flow mechanisms involved in a program.

It works for the programming languages of C and C++. In addition to supporting

compilation and execution on Linux based systems, it also provides an online IDE.

3.4.2.2. Implementation

Following is the working of Clava:

Figure 4: Working of CLAVA

3.4.2.3. Conclusion

The Clava tool is a very useful tool to identify data and control flow information from the

input program. It has elaborate attribute information for each node in the Abstract Syntax

Tree, which enables multiple functionalities. It also provides us with a means of modifying

the program to enable functional parallelism (both intra and inter-functional).

DeptxofqCSE Aug - Dec 2021 Pagea21 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

3.5. Functional parallelism
3.5.1. Sean Rul, Hans Vandierendonck, Koen De Bosschere, Function Level

Parallelism Driven by Data Dependencies, 2007.

3.5.1.1. Introduction

This paper proposes a method for acquiring and assimilating potential parallelism in

programs. The proposed method is said to reveal the amount of parallelism present in the

sequential programs and also suggest an appropriate parallel construct for the program

such as a pipeline architecture, master-slave design and so on.

The method is not an exact analysis but rather a profile-based approach and hence, being

dependent on the input, is not safe in terms of accuracy and correctness. It focuses more

on measuring memory dependencies at a functional level and constructs two graph

representations of the profile data: the interprocedural data flow graph - showing the data

flow between functions and the data sharing graph - denoting the data structures used to

share data. The visualisation of these graphs helps in finding the sections of data that

could be modified and parallelised and revealing the data structures that may need

synchronization for ensuring thread safety.

3.5.1.2. Implementation
● To construct a call graph, they record and form a caller/callee relations among functions,

keeping a track of the number of times a function is executed, different callees of a function

and the execution time it consumes

DeptxofqCSE Aug - Dec 2021 Pagea22 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Figure 5: A Call Graph from data-dependency analysis

● Data Dependencies: Identifies and records in a matrix, inter function dependencies of data.

Figure 6: Memory Dependencies

● The above figure shows a trace of memory operations for a specific variable.

● A matrix is built for each variable modified.

● Using these matrices, the functions are clustered based on the strength of connection among

them and inter and intra cluster data streams are represented as a directed graph.

DeptxofqCSE Aug - Dec 2021 Pagea23 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Figure 7: Interfunctional data flow graph

● To show how data sharing is done, a data-sharing graph is constructed consisting of function

nodes and data nodes and the relation among them.

● A consumer is a function that reads data modified by a different function. The function

writing such data will be the producer. Private consumption is the modification of local data.

Constant consumption is the untraceable modification of data.

Figure 8: Classification of data dependencies

DeptxofqCSE Aug - Dec 2021 Pagea24 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Figure 9: Data sharing graph

● The paradigms discussed:

○ Master-Slave paradigm: a Master thread creates several slave threads and assigns a

part of the work to each. Synchronization is maintained by the use of barriers.

○ Workpile paradigm: Each thread requests a part of the work from a queue called

the workpile. Threads can also push work to the pile.

○ Pipeline paradigm: Follows a simple producer-consumer relation, each stage in the

pipeline produces data for the next stage of the pipeline

3.5.1.3. Conclusion

For generating results, an attempt was made to parallelise a compression procedure in

bzip2. Based on the graphical analysis discussed, 4 functional clusters were discovered

and the pipeline paradigm was implemented. A similar analysis was made for the

decompression process. The results:

DeptxofqCSE Aug - Dec 2021 Pagea25 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Figure 10: Speedup results of parallelized bzip2

A parallel programmer can use this as a tool to detect and automate, to some extent, the

parallelisation of code, but he will still need to validate its correctness.

DeptxofqCSE Aug - Dec 2021 Pagea26 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

3.6. Parallel programming libraries
3.6.1. OpenMP

● OpenMP provides support for parallel programming in C, C++, Fortran in shared

memory environments.

● The programmer has to explicitly mention the regions that can be parallelized. This is

done using the OpenMP directives which are used to annotate the sequential code. We

can define the number of threads to be used as well. OpenMP initiates those many

threads and runs the parallel region across these threads.

● Usage: Works using pragma directives

#pragma omp directive_name more_options

● Effectively used to parallelize code by hand (programmer needs to be aware of what

can be parallelized, does not need to know how to write code for parallelizing it)

● For example, a loop can be fully parallelised, or partially parallelised, if you identify

it, OpenMP can parallelize this part, you can customize by mentioning thread counts,

etc.

● OpenMP provides for synchronization inherently.

● For task-level parallelism, OpenMP provides a “parallel” construct using which we

can manually define the regions of code that can be executed independently of the rest

of the program.

3.6.2. Pthreads
● Library to spawn and manage POSIX threads

● The library is considered to be very effective for multi-processor and/or multi-core

systems. They are useful when there is the scheduling of processes on specific

processors/threads so as to gain improvements in both distributed and parallel

computing.

● The overhead of using “fork” and spawning new processes is higher than the usage of

threads. This is due to the system not needing to initialize the new system virtual

memory space and environment for every thread usage.

DeptxofqCSE Aug - Dec 2021 Pagea27 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

● The effectiveness of threads is higher on multiprocessor systems, but still, gains can be

found on uniprocessors as well. This is due to the exploitation of latency in I/O and

other possible interrupts.

● C++ thread library is built on top of Pthreads

GNU Parallel Algorithms:

● C++ provides a few parallel algorithms for a few standard sequential algorithms

● These are provided under different header files

● These are provided in a separate namespace as GNU extensions

● The following table shows some of the sequential algorithms and their equivalent parallel

algorithms:

Algorithm Header Parallel algorithm Parallel header

std::accumulate numeric __gnu_parallel::accumulate parallel/numeric

std::adjacent_difference numeric __gnu_parallel::adjacent_difference parallel/numeric

std::inner_product numeric __gnu_parallel::inner_product parallel/numeric

std::partial_sum numeric __gnu_parallel::partial_sum parallel/numeric

std::adjacent_find algorithm __gnu_parallel::adjacent_find parallel/algorith
m

std::count algorithm __gnu_parallel::count parallel/algorith
m

std::count_if algorithm __gnu_parallel::count_if parallel/algorith
m

std::equal algorithm __gnu_parallel::equal parallel/algorith
m

std::find algorithm __gnu_parallel::find parallel/algorith
m

std::find_if algorithm __gnu_parallel::find_if parallel/algorith
m

DeptxofqCSE Aug - Dec 2021 Pagea28 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

std::find_first_of algorithm __gnu_parallel::find_first_of parallel/algorith
m

std::for_each algorithm __gnu_parallel::for_each parallel/algorith
m

std::generate algorithm __gnu_parallel::generate parallel/algorith
m

std::generate_n algorithm __gnu_parallel::generate_n parallel/algorith
m

std::lexicographical_compa
re

algorithm __gnu_parallel::lexicographical_co
mpare

parallel/algorith
m

std::mismatch algorithm __gnu_parallel::mismatch parallel/algorith
m

std::search algorithm __gnu_parallel::search parallel/algorith
m

std::search_n algorithm __gnu_parallel::search_n parallel/algorith
m

std::transform algorithm __gnu_parallel::transform parallel/algorith
m

std::replace algorithm __gnu_parallel::replace parallel/algorith
m

std::replace_if algorithm __gnu_parallel::replace_if parallel/algorith
m

std::max_element algorithm __gnu_parallel::max_element parallel/algorith
m

std::merge algorithm __gnu_parallel::merge parallel/algorith
m

std::min_element algorithm __gnu_parallel::min_element parallel/algorith
m

std::nth_element algorithm __gnu_parallel::nth_element parallel/algorith
m

DeptxofqCSE Aug - Dec 2021 Pagea29 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

std::partial_sort algorithm __gnu_parallel::partial_sort parallel/algorith
m

std::partition algorithm __gnu_parallel::partition parallel/algorith
m

std::random_shuffle algorithm __gnu_parallel::random_shuffle parallel/algorith
m

std::set_union algorithm __gnu_parallel::set_union parallel/algorith
m

std::set_intersection algorithm __gnu_parallel::set_intersection parallel/algorith
m

std::set_symmetric_differe
nce

algorithm __gnu_parallel::set_symmetric_diff
erence

parallel/algorith
m

std::set_difference algorithm __gnu_parallel::set_difference parallel/algorith
m

std::sort algorithm __gnu_parallel::sort parallel/algorith
m

std::stable_sort algorithm __gnu_parallel::stable_sort parallel/algorith
m

std::unique_copy algorithm __gnu_parallel::unique_copy parallel/algorith
m

DeptxofqCSE Aug - Dec 2021 Pagea30 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

3.7. Vector Representation of Source Code
3.7.1. code2vec: Learning Distributed Representations of Code

3.7.1.1. Introduction
● This paper enlists a method which uses a neural model to represent sections of source code

as vector embeddings, which are essentially low-dimensional numerical vectors .

● These vector embeddings act as semantic representations of source code, capturing the

meaning, intent and structure in the given section of code.

● The paper explains a method to first convert the code to its abstract syntax tree, then analyze

different paths in the generated tree to produce individual vectors, which is finally

aggregated into the final vector representation.

● Using these numerical representations of source code snippets, it is possible to use this in

multiple applications such as code labelling, code captioning, clone detection and so on.

3.7.1.2. Implementation
● To capture the varying inherent importance of different sections of code within the given

source program, it is necessary to identify the relative importance of these sections in

influencing the final vector embeddings. The paper recognises this requirement and uses a

path-based neural attention model.

● The paper also enlists a method to produce different vector embeddings for similar programs

(not identical) to capture the subtle differences between the two programs. The attention

model enables the calculation of a weighted average value on the attentions produced for

different sections of code, extracted by the structure of an Abstract Syntax Tree.

● To represent the code in the form of an AST, numerical values are attached in a randomised

manner in a bottom up approach to capture sub-trees. These numerical representations of the

AST are then fed into the attention model which generates the final numerical representation

of the input source code.

DeptxofqCSE Aug - Dec 2021 Pagea31 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Figure 11: Architecture of Path-attention neural model used in Code2Vec

3.7.1.3. Conclusion
● The model requires an annotated training data set.

● The model is able to perform better than other popular vector representation

techniques available due to the nature of the attention model concept.

● Vector embeddings capture subtle differences and can thus be used to perform

algorithm recognition (program comprehension).

3.7.2. A Novel Neural Source Code Representation based on Abstract Syntax Tree

3.7.2.1. Introduction
● The paper proposes a method meant for representing source code, which performs better

than other existing state-of-the-art models.

● This method uses an Abstract Syntax Tree based Neural Network model.

● Other existing techniques use the entire AST. However, there are issues related to the large

size of the generated AST which could prove to be detrimental to the performance of the

model. The proposed method chooses to break down the full AST into smaller statement

trees.

DeptxofqCSE Aug - Dec 2021 Pagea32 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

● These smaller statement trees are then converted to vectors by capturing the lexical, as well

as the syntactical information, present inherently in the source code.

3.7.2.2. Implementation
● The given source code is parsed into an Abstract Syntax Tree. It is split into smaller

statement trees using the preorder traversal algorithm.

● Each of these smaller statement trees are encoded to vectors using “Statement Encoders”.

● After this, Bidirectional Gated Recurrent Units are used to capture and model the inherent

structure of statements. Multiple hidden states of the Recurrent units are combined into one

single vector, which is the final representation of the given source code.

Figure 12: Model architecture implemented in the paper

3.7.2.3. Conclusion
● The paper proposes an efficient approach to learn and represent vector embeddings of

source code using “AST-based Neural Network (ASTNN)”.

● The model is successful in capturing both the lexical and syntactical information in the

given code, in addition to identifying the code structure.

● Evaluation of the model is done on two popular program comprehension applications -

source code classification and code clone detection.

DeptxofqCSE Aug - Dec 2021 Pagea33 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

● The model requires large-scale datasets to perform effectively.

● The model is not language-agnostic. It doesn’t perform well on multi-variety datasets.

4. Product Requirements Specification
4.1. Introduction

The purpose of this document is to elucidate the requirements of an Auto Parallelisation

Software, which uses Program Comprehension, at both a functional and non-functional level.

The document is intended to provide a brief description of the intricacies involved in building

such a software, present an in-depth description of the functionalities included, and finally

illuminate the non-functional requirements of the software.

4.2. Project Scope

The proposed project is an auto parallelisation tool that performs source to source

compilation. It takes in the user code as input, brings it to an Intermediate Representation,

analyses and segments the code into multiple parallel paradigms based on data and control

dependencies and parallelizes the aforementioned segments efficiently.

Purpose:

Tool to automate the generation of parallel code covering a variety of problem types.

Benefits:

● Parallel programming helps in executing code efficiently.

● It saves time as it executes the applications in a shorter wall clock time.

● Larger, complex problems can be solved due to the ability to parallelize code.

● It reduces cost as sequential code leads to the under utilization of available hardware

resources. Whereas parallel code tries to extract the best possible performance from

the underlying hardware.

DeptxofqCSE Aug - Dec 2021 Pagea34 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

● Manual parallelization of code is a difficult and error-prone process. Automating the

process of parallelization makes the entire process faster, easier and accurate, thereby

saving valuable time and cost.

● The proposed tool should be able to cover a wide range of problem types. This

generalization makes it indispensable to the development of efficient software.

Objectives:

● Comprehend the source code.

● Analyse data flow and data dependencies.

● Identify parallelizable segments.

● Identify hardware-dependent code optimizations.

● Generate and test equivalent parallel code.

● Check for correctness of the generated parallel code.

Goals:

● Automate the generation of parallel code.

● Cover a wide range of possibilities and variations with respect to the problem types.

● Generate equivalently correct parallel code without introducing additional

vulnerabilities and issues.

● Parallel code generated should extract the best possible performance from the

underlying hardware.

● Provide an efficient and accurate alternative to manually parallelizing code.

Coverage of the System:

● Ideally, the proposed software should be generalized enough to cover a wide range of

possibilities with respect to the problem types that it can handle.

● The possible applications of the proposed software can be broadly divided into 2

categories:

○ Parallelization of legacy software - Softwares that have already been

developed in a sequential manner can be parallelized by using our software,

thereby resulting in considerable improvement in performance.

DeptxofqCSE Aug - Dec 2021 Pagea35 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

○ As a tool to aid in the development of new software - The number of

developers skilled to write accurate parallel code is alarmingly low as most of

them have been taught to develop code in a sequential manner. Thus, our

proposed software can be used to develop new software that can be parallelized

for best possible performance. This will end up saving valuable time and cost

for the software developers.

Limitations of the system:

● Generalizing the software to cover all possible types of problems could be a

challenge.

● Effectively handling the issues that arise due to parallelization such as deadlocks,

race conditions, starvation etc determines the success of the generated parallel code.

4.3. Product Perspective

Parallel computing has played a major role in a variety of areas such as computational

simulations for scientific, engineering and commercial applications. The cost benefits that one

gains along with the increase in performance provides compelling arguments in favour of

parallel computing.

The need for parallelizing source code is ever increasing with the improvements in hardware

and the advent of multicore and multithreaded processors. Without parallelizing source code,

it is not possible to exploit the available hardware resources to extract the best possible

performance.

However, it is difficult to find skilful developers capable of writing parallel code. It is also a

difficult task to migrate and manually parallelise applications, the process being more error

prone.

Automating the process of parallelizing source code would help overcome these problems,

saving valuable time which would have otherwise been spent in studying, analysing,

DeptxofqCSE Aug - Dec 2021 Pagea36 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

identifying and parallelizing the code manually.

We propose to design a novel pipeline to find sections of code that can be parallelised in the

input program, through analyzing the algorithms used, integrating them and extracting

common paradigms or cliches from them. The recognized regions of code are then modified

into the corresponding parallelized equivalent, by using OpenMP directives and/or making

calls to parallel implementations in C++ STL or other equivalent libraries.

4.4. Product Features
● Convert the input sequential source code to an intermediate representation (an Abstract

Syntax Tree).

● Parse the tree to gather a basic understanding of the code to obtain predicates or rules.

● Identify and analyze the data and control dependencies.

● After aggregating all the information obtained until this point, the code is segmented

into sections that can be parallelized.

● The parallelized equivalent of the source code is generated.

● Optimizations are done to fully utilize the underlying hardware resources.

● The generated code is tested and checked for correctness.

● Performance metrics are then used to evaluate the generated code.

4.5. Operating Environment

There are no specific requirements with respect to the environment per se.

But the system running the generated parallel code should have the necessary features to

support multiprogramming. This is with respect to support for multiple threads, multiple

processors and/or multiple cores.

4.6. General Constraints, Assumptions and Dependencies

● Legal implications: The source code being transformed by our pipeline should have the

necessary permissions to access and update it. The tools, methods, approaches we are

proposing to use should not infringe any existing copyrights, patents etc.

DeptxofqCSE Aug - Dec 2021 Pagea37 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

● Usage limitations:

● Generalizing the parallelization process for any type of sequential code.

● Effectively handling the issues that would arise due to parallelization such as

deadlocks, race conditions, starvation etc.

● Handling the overheads involved in parallelizing the source code to gain sufficient

speed up.

● It is assumed that the source code being processed is free from semantic and run-time

errors that could manifest during or after the parallelization process.

● It is assumed that the end-user has a system that provides support for multiprogramming

in terms of multiple threads, multiple processors, multiple cores.

4.7. Risks
● Failure of the dependency analysis of the code implies no guarantee to the correctness of

the final transformation.

● Failure of a thread or starvation due to the creation of more threads or execution of other

processes alongside would reduce the time efficiency or may even lead to a crash.

● If issues such as race conditions, deadlocks etc. are not handled properly, it could lead to

serious issues.

● Hardware failures in terms of the failure of handling multiple threads, multiple processors,

multiple cores could defeat the very purpose of parallelizing code.

● Version Compatibility problems: If hardware-specific optimizations are made, the

generated code cannot be reused as is, on other systems. The code will have to be sent

through our pipeline again and the corresponding parallel code should be generated

specific to that hardware.

4.8. Functional Requirements

Validity Test on inputs:

DeptxofqCSE Aug - Dec 2021 Pagea38 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

● The inputs are the same as the ones being processed by the original sequential source

code.

● So, as long as the input is valid for the original source code, it will be valid input for our

generated parallel code as well.

The sequence of operations:

Intra-Function Parallelism:

● Convert source code to an Intermediate Representation (like an enriched Abstract Syntax

Tree).

● Parse the tree with a top-down and requirement-driven approach to identify basic

concepts. These concepts are represented either as rules or embeddings.

● Compose the basic concepts to form bigger known algorithms.

● If any algorithm is found, match the corresponding region of code and identify the data

and control dependencies for the region.

● Choose from one of the parallel alternatives from the algorithm repository to modify and

replace the corresponding region in the AST.

● Verify if the modified region fits in accurately by analysing the data and control

dependencies around the region.

● After the AST is modified, we use our compiler to decompile the AST back to the original

source code language.

Inter-Function Parallelism:

● We perform a similar analysis as before to retrieve the data and control flow and

dependencies from the Abstract Syntax Tree of the source code.

● Based on the results of the analysis, an appropriate parallel paradigm is chosen

● This parallel paradigm is applied to the source code and an attempt is made to parallelise

the same at a functional level

● A generator program generates a new source code that complies with the parallel

paradigm suggested.

● Verification is then performed to ensure the correctness of the code.

DeptxofqCSE Aug - Dec 2021 Pagea39 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Error handling and recovery:

Various errors and issues might arise due to parallelization. These include:

● Deadlocks

● Race conditions

● Starvation

It might also be difficult to effectively manage multiple threads. It may result in coherency

issues and so on.

There is a requirement to handle these error conditions in the right manner.

Consequences of parameters:

● The information about the underlying hardware configuration is significant to generate the

most optimized version of the parallel code possible, that extracts every bit of performance

from the underlying hardware.

● Information needed to evaluate the performance metrics:

○ The wall clock execution time of the original sequential source code

○ The wall clock execution time of the generated parallel code

○ Number and type of hardware resources available

● The sequential source code being fed into our pipeline must be free from semantic and

run-time errors as these will propagate to the generated parallel code and there is nothing

that our software can do about it.

Relation of output to input:

Output is just the parallelized version of the input sequential source code.

The difference could be in terms of OpenMP pragma directives added or replacement of

segments of code with the most efficient parallel version of it etc.

4.9. External Interface Requirements
4.9.1. User Interfaces

● The proposed pipeline, implemented as a tool, should have an easy to use interface - a

GUI that lets the user upload the input sequential source code.

● The tool performs the different stages in the pipeline and outputs the generated parallel

code if applicable.

DeptxofqCSE Aug - Dec 2021 Pagea40 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

● The performance metrics are also shown with the evaluated values.

● The relative timing of inputs and outputs: The generation of output should not take a

considerable amount of time from the moment the input is fed into the pipeline.

4.9.2. Hardware Requirements
● Input is fed from standard input devices like keyboard, mouse etc.

● Output devices include standard output devices like display monitor, printer etc.

● The software product should be able to perform the required I/O through these devices.

● It should have the required permissions to spawn multiple threads and access all the

available cores or processors.

4.9.3. Software Requirements

4.9.3.1. GCC/G++

Since the proposed software would be generating parallel code for the C++ language, we

would need the gcc/g++ utility to compile and generate the required executables.

Version Requirements: GCC 5.0 onwards

4.9.3.2. CLAVA/LARA

The LARA language facilitates querying on the Abstract Syntax Tree of the input code.

Clava is an S2S compiler for C/C++, built with LARA as its foundation. It provides

better ways to modify and transform C/C++ code, statically and dynamically.

4.9.3.3. Python

Python utility is needed as some of the helper functions and code required to perform

some functionalities will be written in python.

Version Requirements: Python 3.0 onwards

4.9.3.4. OpenMP

OpenMP provides support for parallel programming in C, C++, Fortran in shared

memory environments. It was introduced in 1997. The programmer has to explicitly

mention the regions that can be parallelized. This is done using the OpenMP directives

DeptxofqCSE Aug - Dec 2021 Pagea41 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

which are used to annotate the sequential code. OpenMP initiates the required number of

threads (can be set by the user) and runs the parallel region across these threads.

Version Requirements: OpenMP version 4.0 onwards

4.9.3.5. Pthreads

Pthreads library will be required to create, spawn and manage threads as the threads are

the basic units of execution and the means by which parallelism can be achieved.

4.10. Non-Functional Requirements
4.10.1. Performance Requirement

● The performance at the very minimum should match that of the original sequential

source code.

● The speedup gained from parallelizing should be substantial enough to overlook the

overheads involved in generating the parallel code.

● Should ensure speedup or efficiency boost in a particular or all metrics as per user

requirements

● The performance is evaluated against various metrics as follows. For the generated

parallel code to be acceptable as per the user requirements, the calculated performance

metrics should be greater than a certain threshold as specified by the user.

Performance Metrics :

● Speedup: ratio of sequential to parallel execution times

● Efficiency: ratio of performance to the computational resources used to gain that

performance

● Redundancy: ratio of the number of instructions executed by the sequential to the

parallel version of the code

● Utilization: the ratio between the computational resources used and the resources

available

● Restrictions: limitations as defined by Amdahl’s law and other related laws

Software Quality Attributes:

DeptxofqCSE Aug - Dec 2021 Pagea42 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

● Correctness: The generated parallel code should compare with the original sequential

source code in terms of correctness. The newly generated parallel code should

successfully pass all the test cases that the original sequential source code passes. The

outputs generated must be similar in content and format. The only considerable

difference must be with respect to the speed up.

● Maintainability: The pipeline developed should have clean code and should be well

documented to ensure that maintenance is easy.

● Reliability: It should reliably generate parallelized code without adding any issues.

● Robustness: It should be able to handle a wide spectrum of problem types in terms of

generating the correct parallel code for it.

● Testability: It should be testable for different scenarios.

● Usability: It should have an easy and convenient to use interface that anyone can use

with minimum additional knowledge.

4.10.2. Safety Requirements
● There should not be any loss or damage to the original source code that is being

parallelized.

● The generated code should not damage or corrupt the data that it works on.

4.10.3. Security Requirements
● The proposed software should not copy or store any temporary files that may be

generated.

● The data generated during the process of parallelization should be completely

discarded after the required parallel code is generated. If not, this will lead to issues

such as violation of security and privacy rules of the original software whose source

code is being parallelized. This is very significant as the software might include

sensitive data, patented and copyrighted technology.

● We should ensure that no security breaches are introduced in the modified source code

● The security standards of the original sequential source code should be maintained as

such. Security vulnerabilities should not be introduced while generating the parallel

code.

DeptxofqCSE Aug - Dec 2021 Pagea43 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

5. System Design
5.1. Introduction

In the earlier days, there was very little computational power that could be provided by the

processors on a computer system. Software was written sequentially, which meant every

instruction was executed one by one. This meant large software took a very long time to

execute.

But there was an exponential boom in the development of computer hardware, with faster and

more powerful processors coming into the market. The clock speed drastically increased

which enabled more instructions to be executed in very short durations of time. However, this

continuous increase in power and computational capacity was cut short a few years ago. This

meant that the ever-increasing need for more and more computational power could no longer

rely on developing hardware. We had to shift focus to the software side, to make intelligent

and efficient use of available hardware.

Parallel computing is a paradigm that enables us to make efficient use of available hardware

to run multiple instructions on multiple hardware resources, simultaneously. This could mean

running separate tasks on multiple cores/threads available on a single system or running

separate tasks on multiple systems connected in a cluster. This enables us to execute our

software faster and saves valuable time in several use cases. Thus, we propose a novel

approach to solve the problem of Parallelisation of sequential code, by the use of multiple

techniques integrated into one package to convert any general sequential source code to its

parallel equivalent source code. We achieve this primarily by using the concepts of Program

comprehension, Task and Functional level parallelism.

DeptxofqCSE Aug - Dec 2021 Pagea44 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

The purpose of this document is to elucidate the high-level design of an Auto Parallelisation

Software, that takes in sequential source code as its input and generates the parallelized

equivalent. The document is intended to provide details about the design of the software.

The high-level design of the proposed software includes the following:

● A component or module capable of generating an enriched Abstract Syntax Tree (AST).

● The generated AST should be such that it should enable us to query the nodes to retrieve

useful information about the input sequential source code.

● A component or module that queries the AST and analyzes the input code to generate data

dependency graphs, control flow graphs, data flow graphs.

● A component or module that assimilates the information from the various graphs

generated. The information extracted from this is used to determine the segments of code

that are candidates for parallelization.

● A component or module that takes in these candidate segments of code, parallelizes them

using different techniques proposed and developed by us to generate the equivalent

parallel code.

5.2. Current System

Present-day tools designed to convert sequential to parallel code focus mainly on loop-level

parallelization. Several tools implementing different techniques to achieve loop level

parallelisation exist such as Pluto, Parawise, Compar, etc. These are also called Parallelizing

Compilers. Some of the most popular ones and their approach is mentioned below in brief:

● Pluto

This tool makes use of a concept called the Polyhedral model. This tool focuses on

achieving loop-level parallelization and achieves a good degree of optimisation.

● ParaWise

This is a commercially available paid tool designed to convert sequential code to parallel

code pertaining to loops and some level of task parallelization. It provides ample

DeptxofqCSE Aug - Dec 2021 Pagea45 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

customization options to users to control the level of parallelization.

● ComPar

This is a semi-automatic tool designed to optimize code by fusing other source-to-source

compilers' outputs that can be achieved from auto parallelizing compilers which need no

manual intervention. It makes use of the outputs obtained from other S2S compilers such as

AutoPar, Cetus and Par4All.

The approach we present is focused on achieving more generalised parallelization. We do so

by trying to understand the intent and logic of code, termed as Program comprehension, which

enables us to replace such code with its parallel equivalent, thus achieving task level

parallelization. Our design also includes a Master-Worker scheduling algorithm which enables

us to execute independent functions on multiple threads, thus achieving functional

parallelization.

5.3. Design Details

The platforms, systems and processes that the proposed software depends on are:

● A process that generates an enriched AST: The Abstract Syntax Tree corresponding to the

input sequential source code must be generated. Ubiquitous tools and compilers like gcc,

clang generate AST. The generation of the AST should be modified to contain more

information about the input sequential source code so that we can query the nodes of the

enriched AST effectively.

● A process that generates the Data Dependency Graphs, Control Flow Graphs and Data Flow

graphs: The generation of accurate Data Dependency Graphs, Control Flow Graphs and

Data Flow Graphs is significant to ensure the success of the forthcoming stages in the

proposed pipeline. Ubiquitous tools and compilers like gcc, clang generate some of these

graphs. They will have to be modified to better suit our requirements in terms of the analysis

that needs to be performed on it to extract meaningful insights about the input sequential

source code.

DeptxofqCSE Aug - Dec 2021 Pagea46 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

● GCC/g++

Since the proposed software would be generating parallel code for the C language, we

would need the GCC utility to compile and generate the required executables.

g++ will be required as the development of some of the functionality in our proposed

software is done in C++.

Version Requirements: GCC 5.0 onwards

● CLAVA / LARA

The LARA language facilitates querying on the AST of the input code

Clava is a Source to Source compiler for C/C++, built with LARA as its foundation. It

provides better ways to modify and transform, statically and dynamically, C/C++ code.

● Python

Python utility is needed as some of the helper functions and code required to perform some

functionalities are written in python.

Version Requirements: Python 3.0 onwards

● OpenMP

One of the approaches we are considering involves generating parallel code that consists of

OpenMP directives inserted at the right place in the input sequential source code. This is the

reason the proposed software requires the OpenMP utility.

Version Requirements: OpenMP version 4.0 onwards

● Pthreads

Pthreads library will be required to create, spawn and manage threads as the threads are the

basic units of execution and the means by which parallelism can be achieved.

● Thread Pool:

DeptxofqCSE Aug - Dec 2021 Pagea47 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

The proposed software involves the implementation of thread pools to enable us to gain fine

grained control over the executing threads. We use an open source implementation of thread

pool, which is a C++ header only library which provides a definition of a simple thread pool,

capable of accepting and executing tasks and provides a means to capture the return value of

functions using the C++ concept of future and promises.

5.3.1. Novelty

Our proposed design integrates multiple techniques to convert sequential code to its parallel

equivalent. We make use of program comprehension to understand the nature and intent of

code, and replace relevant sections of code with the parallelised equivalent using mappings.

Such sections/functions of code are then executed in parallel by identifying the underlying

data and control dependencies, enabling us to execute independent portions of code

simultaneously. To achieve fine grain control over efficient execution of such multiple

functions, we design a scheduling algorithm based on the dependencies, allowing for better

control and improving performance in an adaptive manner. This proposed methodology is

novel based on our literature survey.

5.3.2. Innovativeness
The proposed methodology of scheduling threads after checking for data dependencies, and

using program comprehension for improving individual function performance by replacing

them with optimised parallel program is a technique that has not been tried before. The

method allows for a new approach that may shed new perspective and also open avenues for

more work on the front, especially due to the fine control gained by the way we have

implemented thread scheduling.

5.3.3. Interoperability
The input so far is C/C++ code, and the resultant program is in C++. This allows for the

program to be run on any machine after compilation. However, the performance will depend

on the machine, the number of threads and any related machine dependent optimizations.

DeptxofqCSE Aug - Dec 2021 Pagea48 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

5.3.4. Performance
The performance at the very minimum should match that of the original sequential source

code.

● The speedup gained from parallelizing should be substantial enough to overlook the

overheads involved in generating the parallel code.

● Should ensure speedup or efficiency boost in a particular or all metrics as per user

requirements

The performance is evaluated against various metrics applicable to our proposed software as

follows:

● Speedup: ratio of sequential to parallel execution times.

● Efficiency: ratio of the performance to the computational resources used to gain that

performance.

● Redundancy: ratio of the number of instructions executed by the sequential to the

parallel version of the code.

● Utilization: ratio between the computational resources used and the resources

available.

5.3.5. Security
The proposed methodology should not copy or store any temporary files that may be

generated. Also, the data generated during the process of parallelization should be

completely discarded after the required parallel code is generated. If not, this will lead to

issues such as violation of security and privacy rules of the original software whose source

code is being parallelized. This is very significant as the software might include sensitive

data, patented and copyrighted technology.

We will need to ensure that no security breaches are introduced in the modified source code.

That is, the security standards of the original sequential source code should be maintained as

such.

DeptxofqCSE Aug - Dec 2021 Pagea49 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

5.3.6. Reliability
As the resultant code is in C++, there is no issue with the code working on different

machines. However, we have to ensure that the function runs as it used to previously and

produces the same results as before parallelization. To ensure this, we make sure that all the

data dependencies are satisfied before the usage of any data by any thread. This is done by a

thorough analysis of the data dependency graph and using that information in scheduling in

a manner ensuring the satisfaction of data-dependencies.

5.3.7. Maintainability
All our source code is well documented with comments. Additionally, our report carries a

detailed explanation of our ideas, and implementation. This is useful in understanding the

purpose of our code and the design thought behind it. We have ensured from the start to

keep the project in an organised manner, allowing for incremental improvements, while

keeping the structure easy to understand.

5.3.8. Legacy to modernization
By using our methodology, upon scaling, it would be possible to convert legacy code written

in a sequential manner into one that runs on parallel architecture. This would help improve

the performance of the legacy code, with the improvement depending on the program, it’s

domain and the design of the program.

5.3.9. Reusability
The progress made by our work could find potential reusability in GPU programming and

possibility of automating conversion of programs into GPU specific architectures, like into

CUDA or Vulkan programs. This could be an area of research where our methodology could

have a possible impact, with some necessary modifications in the idea to suit those exact

system requirements.

5.3.10. Application compatibility
Our methodology tries to be as system independent as possible, with regards to

compatibility. We have tried to maximize the number of threads utilized, while not setting

DeptxofqCSE Aug - Dec 2021 Pagea50 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

any minimum threshold. Since all our code is written in languages that have a wide range of

support across systems and OS’s, we suspect no specific compatibility issues to arise.

However, we do require support for OpenMP, gcc (along with g++) and python, as

dependencies. We have assumed the underlying architecture to have random access memory,

and also to have multiple-cores and threads.

5.3.11. Resource utilization

The very core intent of our research has been to improve the performance of programs by

the utilisation of existing resources that are otherwise not being used. Our design so far uses

as many threads as possible in it’s thread pool during scheduling of the client program, to

run in parallel.

6. Implementation and Pseudo Code

In our research, we have set our goal to find the limit of parallelism we can achieve for the given

sequential source code. The objective is to gain the maximum possible speedup that can be

achieved by parallelizing a particular program. In this regard, we have experimented with different

approaches that work on achieving parallelism at different levels of abstraction and hence providing

different degrees of control over the execution of the program itself.

Some Assumptions made while trying out the different approaches during

Capstone Phase 1:

● The input sequential source program consists of atomic functions that perform only one

functionality.

● Our research on Program comprehension techniques to convert sequential to parallel code

has provided us with valuable insights on analysing a program to obtain its intent(s). This

enables us to predict and define a paradigm (or cliche or algorithm) associated with every

function/region of code. The different paradigms are pre-defined and stored in a database,

and the corresponding mappings to one or more optimised versions for the paradigm are

defined and stored as well.

DeptxofqCSE Aug - Dec 2021 Pagea51 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

● In Phase 1, we have assumed we have the paradigm identifier and database set up, which

enables us to modify and replace code within functions to achieve intra-function

parallelisation. By assuming the availability of this functionality, we have been able to work

on Intra and Inter level functional parallelism and show meaningful results at the end of

Phase 1.

● We plan to work on the paradigm identifier and populate the corresponding database at the

beginning of Phase 2.

● The cases we are trying to handle now predominantly involve programs with functions

(procedural programming).

● The function calls are sequential, i.e there are no selection, looping statements encapsulating

these function calls. However these can be present within the functions themselves.

6.1. Parallelization Phase

6.1.1 Method 1: Inter and Intra-Function Parallelism by AST Querying

and replacement with OpenMP Directives

6.1.1.1 Details about the approach:

● We begin with the generation of an Enriched Abstract Syntax Tree. This is different from a

basic Abstract Syntax Tree as it provides ways to query the AST to obtain useful

information and meaningful insights about the input source code. The generation of the

Enriched Abstract Syntax Tree is carried out using a tool called Clava.

● Next, querying of the generated AST is done. This is done by writing code in a language

called LARA which is a language built on top of Javascript and is compatible with the Clava

tool, thereby allowing us to query the AST.

● The following two functionalities have been implemented:

○ Functional parallelism

■ Here, the primary objective is to find functions that are independent of each other.

■ Functions are said to be independent of each other if they are performing operations

on different sets of data. If they are working on the same data, none of the functions

involved should be modifying this data. However, they are allowed to read the data

simultaneously.

DeptxofqCSE Aug - Dec 2021 Pagea52 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

■ To identify the candidate functions that can be run parallely (functional parallelism),

data dependencies that exist are found.

■ This is done by performing read-write dependency analysis.

■ Two functions are inherently said to be candidates for functional parallelism if they

work on different data. Hence these functions are independent of each other and can

be parallelized.

■ If the functions being considered work on the same data, the following cases arise:

● If the argument(s) used by the function(s) is/are passed by using the mechanism

of pass by value, then any modification being made to the argument(s) is local to

the function only. Hence the functions being considered are independent.

● If the argument(s) used by the function(s) is/are passed as constant parameters,

then it means that these functions cannot modify these argument(s), hence the

functions being considered are independent.

● If the argument(s) used by the function(s) is/are passed by using the mechanism

of pass by reference, then any modifications being made to the argument(s)

within a function will propagate across the entire program. Therefore read-write

dependency analysis will have to be performed to find if there is indeed a write

to such an argument happening within the function.

○ If a write is being performed to such an argument, then the functions cannot

be parallelized, they have to be run in the same sequential order they are

being called by the user, to maintain the intended semantics.

○ If there exists only read dependencies and there is no write being performed,

then the functions are independent and hence can be run in parallel.

● It is not enough to only consider arguments being passed to the functions under

consideration to decide whether they are independent. There can also be cases

where the functions use and modify global variables. Read-write dependencies

are analyzed for such global variables as well.

○ If the functions under consideration only read these global variables, then the

functions are independent and can be run in parallel

○ If the functions under consideration write into these global variables, then the

functions using these global variables cannot be parallelized, they have to be

DeptxofqCSE Aug - Dec 2021 Pagea53 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

run in the same sequential order they are being called by the user, to maintain

the intended semantics

■ Once the independent functions are established, they are parallelized by inserting

OpenMP directives at accurate points in the code. This is done by creating OpenMP

sections and associating each parallelizable function to one OpenMP section.

○ Intra Function Parallelism (Parallelism within the function)

■ Here, considering that the functions are atomic having only one purpose and that we

know what each function is intended to do (we obtain this information from the

defined paradigm identifier and pre-defined database, which we have assumed is

available in Phase 1, on which we intend to work at beginning of Phase 2), we try to

map the functions to the parallelized equivalent of it.

■ For example, if the user has a function to perform sort where the user has written his

own logic, we can map it to the gnu_parallel:sort algorithm available under the

parallel algorithms library in C++.

■ There are obviously going to be cases where the function cannot be mapped to an

algorithm in the parallel algorithms library. In such a scenario, we would like to map

the user’s sequential code to the parallelized equivalent that we have written. Hence

a database needs to be created to map different possible sequential algorithms to

their parallelized equivalents. This has to be made comprehensive with respect to the

number of different cases that can arise.

■ Once the mapping is identified, the user's code within the function is replaced by the

mapped parallelized equivalent.

● The parallelized equivalent of the input sequential source code is generated by applying the

above-mentioned functionalities.

● The speedup achieved was considerable as can be seen in the following graph:

DeptxofqCSE Aug - Dec 2021 Pagea54 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Figure 13 : Results of Method-1 on i7 9th gen

Input Code:

void sort(int* arr_,const int arr_n)
{

for (int x = 0;x < arr_n-1;++x)
{

int min_ = i;
for(int y = x+1;y < arr_n;++y)
{

if(arr_[y] < arr_[min_])
{

min_ = y;
}

}
int temp_ = arr_[x];
arr_[x] = arr_[min_];
arr_[min] = temp_;

}
}

DeptxofqCSE Aug - Dec 2021 Pagea55 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

int my_max(int* a4, int n4)
{

int max = a4[0];
for (int x = 1; i < n4; ++x)
{

if(a4[x]>max)
{

max = a4[x];
}

}
return max;

}

int my_min(int* const a4, const int n4)
{

int min = a4[0];
for (int x = 1; x<n4; ++x)
{

if(a4[x]<min)
{

min = a4[x];
}

}
return min;

}

int main()
{

int arr1[] = {7, 34, 5, 3, 1};
int n = sizeof(arr1) / sizeof(arr1[0]);

my_sort(arr1, n);
int min1 = my_min(arr1, n);
int max1 = my_max(arr1, n);

}

Output Code:

void my_sort(int *arr, int const arr_n) {
__gnu_parallel::sort(arr, arr + arr_n);

}

DeptxofqCSE Aug - Dec 2021 Pagea56 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

int my_max(int *a4, int n4) {
return *__gnu_parallel::max_element(a4, a4 + n4);

}

int my_min(int * const a4, int const n4) {
return *__gnu_parallel::min_element(a4, a4 + n4);

}

int main() {
int arr1[5] = {7, 34, 5, 3, 1};
int n = sizeof(((arr1))) / sizeof(((arr1[0])));
my_sort(arr1, n);
#pragma omp parallel sections
{

#pragma omp section
int min1 = my_min(arr1, n);
#pragma omp section
int max1 = my_max(arr1, n);

}
}

DeptxofqCSE Aug - Dec 2021 Pagea57 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Figure 14: Method-1 implementation

6.1.1.2. Inferences from Method 1

● The degree of parallelism that could be achieved was still limited. This is because we add

OpenMP directives and the rest of the details are abstracted. Parallelizing of the code based

on the directives inserted, creating, spawning threads, assigning functions to the threads,

scheduling and managing these threads are all abstracted as this is managed by the OpenMP

library based on the directives we have inserted.

● Hence we don’t have the much-needed flexibility with respect to the above parameters,

thereby limiting the parallelism that can be achieved.

● This method could also not support the grouping of independent functions together due to

limitations with respect to the OpenMP directives.

DeptxofqCSE Aug - Dec 2021 Pagea58 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

● We realized that we would need to gain more fine-grained control over the actual execution

of threads than what we could achieve using OpenMP.

● The above-mentioned reasons were the motive to consider a different approach - namely

Method 2.

6.1.2. Method 2: Naive Thread Scheduling using C++ concepts of

Promises and Futures

6.1.2.1. Details about the approach

● We begin with the generation of an Enriched Abstract Syntax Tree. This is different from a

basic Abstract Syntax Tree as it provides ways to query the AST to obtain useful

information and meaningful insights about the input source code. The generation of the

Enriched Abstract Syntax Tree is done using a tool called Clava.

● Next, querying the generated AST is done. This is done by writing code in a language called

LARA which is a language built on top of Javascript that is compatible with the Clava tool,

thereby allowing us to query the AST.

● We then perform a read-write dependency analysis to get significant information about the

input sequential source code.

● The information assimilated from the read-write dependency analysis performed above

combined with the ability to query the enriched AST is used to populate text files that will

be used by the next phase in our pipeline.

● The information about the functions that are modifying the arguments and the arguments

being modified by the respective functions are written into one text file.

● The order of function calls along with information about the function name, the arguments

being passed to these functions are written into another text file.

● The next phase in this approach includes the naive thread scheduling algorithm written

using C++ promises and futures.

● The text files generated are used by the thread scheduling algorithm.

● The information gathered from these text files is used to establish the order in which the

functions can be called to exploit the possible parallelism.

DeptxofqCSE Aug - Dec 2021 Pagea59 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

● Functions that have no dependencies are executed in parallel.

● Functions that have dependencies are reordered in such a way that these functions are

executed only after the dependencies are satisfied as mentioned in the original sequential

code, thereby maintaining the semantics of the program.

● This is achieved by using the concept of C++ promises and futures.

● The use of C++ promises and futures ensures that no function that has a dependency is

executed until all its dependencies are fulfilled.

● C++ thread libraries are used to create, spawn and schedule the threads.

● One function is executed as part of a thread.

● The promises and futures are associated with the threads based on the dependencies

Following are some test cases and obtained results:

Example 1: (Works with this method)

Input program (only the function calls inside main):

fn_A(arr1,n)

fn_B(arr1,n)

fn_C(arr1,n)

fn_D(arr2,n)

fn_E(arr2,n)

Constraints:

fn_A function modifies arr1, which implies fn_B and fn_C dependent on arr1, is in turn

dependent on the execution of fn_A

Output:

std::promise<void> p_arr1_0

thread ti(fn_A, params);

thread ti(fn_D, params);

thread ti(fn_E, params);

std::future<void> f_arr1_1= p_arr1_0.get_future();

thread ti(fn_B, params);

DeptxofqCSE Aug - Dec 2021 Pagea60 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

thread ti(fn_C, params);

Analysis:

Function calls fn_B and fn_C with arguments arr1 need to be executed only after fn_A on

arr1 finishes its execution.

However, fn_D and fn_E are two function calls on arr2, which can be independently

executed.

Hence the reordering of function calls to schedule fn_A, fn_D, fn_E happen as expected.

Future is called on a promise set on fn_A(arr1, n). This implies, there is a wait on fn_A(arr1,

n) to finish its execution, only then the consecutive statements are executed. Thus fn_B and

fn_C on arr1 are correctly executed on a possibly modified arr1 variable.

This is a test case that behaves as expected and can be scheduled using this method.

Example 2: (Not optimised with this method)

Input program (only the function calls inside main):

fn_A(arr1,n)

fn_B(arr1,n)

fn_C(arr1,n)

fn_A(arr2,n)

fn_B(arr2,n)

fn_C(arr2,n)

Constraints:

fn_A function modifies arr1

fn_A function modifies arr2

fn_B and fn_C is dependent of execution of fn_A

DeptxofqCSE Aug - Dec 2021 Pagea61 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Output:

std::promise<void> p_arr1_0

thread ti(fn_A, params);

std::promise<void> p_arr2_0

thread ti(fn_A, params);

std::future<void> f_arr1_1= p_arr1_0.get_future();

thread ti(fn_B, params);

thread ti(fn_C, params);

std::future<void> f_arr2_1= p_arr2_0.get_future();

thread ti(fn_B, params);

thread ti(fn_C, params);

Analysis:

There are two function calls - fn_A(arr1, n) and fn_A(arr2, n), which are modifying their

respective arguments (in this case, arr1 and arr2 respectively). This means that fn_A and

fn_C function calls on arr1 and arr2 need to be executed only after the execution of fn_A on

arr1 and arr2 respectively.

The fn_B and fn_C calls can independently execute as long as their dependency on

corresponding fn_A calls is satisfied. However, in the output generated by this method, there

is an unnecessary wait on completion of fn_A(arr1, n), which is affecting the execution of

fn_B and fn_C on arr2, something which is completely independent of this particular fn_A

call. Hence such cases cannot be handled using this method.

The future approach is to obtain fine grained control through our own thread scheduling

algorithm.

DeptxofqCSE Aug - Dec 2021 Pagea62 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Figure 15: Method-2 implementation

6.1.2.2. Inferences from Method 2:

● This method provided a more fine grained control over thread creation, management and

scheduling giving more flexibility and opportunity to maximize the parallelism that can

be achieved.

● This method allowed us to go a level down in terms of the abstraction as we are dealing

with threads directly in this approach.

● One of the major drawbacks of this approach was that grouping of function calls could

not be performed properly.

● The reordering of functions had limitations to the cases where it was accurate and

provided sufficient speed up.

DeptxofqCSE Aug - Dec 2021 Pagea63 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

● As grouping of functions could not be done, there were cases where certain functions

ended up waiting for the completion of execution of certain other functions they didn't

even depend on, even when the required dependencies for the execution of this

particular function had already been satisfied.

● This is not desirable and thereby we needed a more fine grained control over thread

scheduling to be able to achieve the maximum possible speedup by parallelism.

● This was the intent behind our next approach - namely Method 3

6.1.3. Method 3: Optimised Thread Scheduling for Functions using

Master-Worker based approach to achieve Functional Parallelism

6.1.3.1. Details about the approach:

● We begin with the generation of an Enriched Abstract Syntax Tree. This is different from a

basic Abstract Syntax Tree as it provides ways to query the AST to obtain useful

information and meaningful insights about the input source code. The generation of the

Enriched Abstract Syntax Tree is done using a tool called Clava.

● Next, querying the generated AST is done. This is done by writing code in a language called

LARA which is a language built on top of Javascript that is compatible with the Clava tool,

thereby allowing us to query the AST.

● We then perform a read-write dependency analysis to get significant information about the

input sequential source code.

● The information assimilated from the read-write dependency analysis performed above

combined with the ability to query the enriched AST is used to populate text files that will

be used by the next phase in our pipeline.

● The information about the functions that are modifying the arguments along with the

information about the arguments being modified by these functions is written into one text

file.

● The order of function calls along with information about the function name, the return type

of the function, the arguments being passed to these functions, the parameters of the

DeptxofqCSE Aug - Dec 2021 Pagea64 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

functions, the data types of both the arguments and the parameters are written into another

text file.

● The information about the functions, their return types, the line number where the function

is being called and the variable to which the returned value is being assigned (in case of a

non - void return type).

● The next phase in this approach is the thread scheduling algorithm.

● The text files populated by the previous phase are used by the thread scheduling algorithm.

● The information from these text files is assimilated and stored in appropriate data structures.

● The main idea behind this approach is to follow a master worker based method to ensure the

execution of processes that are independent of each other simultaneously and ensure the

right order of execution of dependent functions, to maintain the correctness of execution.

● Here, there are two master threads that are always running.

○ One master thread that schedules the functions to the worker threads

○ One master thread that tracks the worker threads to know their status

● We make use of 2 separate task queues - ready and wait queues.

● The wait queue is intended for those functions which are dependent on a previously called

function(s). This implies that such functions need to wait until its dependency functions

finish their execution. Such functions get appended into the wait queue.

● Once the dependency functions finish their execution, the functions waiting in the wait

queue are moved into the ready queue, implying they are ready to be executed. Functions

inside the ready queue are assigned separate threads for execution. Once assigned, such

functions are dequeued from the ready queue.

● To ensure the synchronization is maintained in common data structures used to carry out the

scheduling process, such as the ready and wait queues, other lists used to maintain

dependent functions and corresponding arguments, mutex locks have been used to prevent

any race conditions.

● To make our scheduling algorithm generalized for any sorts of client programs, we make use

of a program generating technique, which produces the parallelised version of the client

code, with appropriate thread allocation and mutex locks in place.

● To avoid excessive overheads generated due to the allocation of new threads and the

deallocation of existing threads when the processes finish their execution, we make use of a

thread pool. A thread pool uses a fixed number of threads, which remain allocated until all

DeptxofqCSE Aug - Dec 2021 Pagea65 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

the processes finish their execution. It makes use of the C++ concepts of ‘future’ and

‘promise’ to obtain the return value of functions that are assigned as processes to threads.

This avoids repeated cycles of allocation and deallocation of threads and improves

efficiency.

● Processes are assigned to the thread pool, which maintains and coordinates the assignment

of the process to one of the available threads. To exploit the full hardware potential available

on the system, we assign all available hardware threads to the thread pool, thereby

increasing performance.

Input program (only the function calls inside main):

fn_A(arr1,n)

fn_B(arr1,n)

fn_C(arr1,n)

fn_A(arr2,n)

fn_B(arr2,n)

fn_C(arr2,n)

Constraints:

fn_A function modifies arr1

fn_A function modifies arr2

Output:

In the generated parallel program, following is the sequence of events:

// declare "special" array which holds all arguments of function calls

presently being executed

// define two master thread functions to update special array and move

functions from wait queue to ready queue when there are no conflicting

dependencies

// Push function call to either ready or wait queue depending on

whether any of its arguments is present in the special array presently

DeptxofqCSE Aug - Dec 2021 Pagea66 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

push_to_ready_queue(fn_A, arr1, n)

push_to_wait_queue(fn_B, arr1, n);

push_to_wait_queue(fn_C, arr1, n);

push_to_ready_queue(fn_A, arr2, n);

push_to_wait_queue(fn_A, arr2, n);

push_to_wait_queue(fn_A, arr2, n);

Analysis:

The input program was the same as the one used in the previous method.

Previously in Method 2, the fn_A(arr2, n) was waiting unnecessarily until fn_B and fn_C

finished their respective executions (which were indirectly waiting for fn_A to finish its

execution). However, with the use of dynamic wait and ready queues, functions are pushed

to execution queues purely based on their arguments dependency on currently executing

functions. In this case, fn_A(arr2, n) wouldn’t need to wait on anything since none of its

arguments (both arr2 and n) are presently not being modified by any previous methods.

Thus, there is no unnecessary waiting and execution flow is continuous.

Thus, in this method we were able to ensure independence among the two dependent

function clusters through fine grained control over the scheduling of threads. Execution of

the first cluster is independent of the execution of the second cluster. Intra-cluster

dependency is still maintained implying that execution of fn_B and fn_C on arr1 would still

wait on the execution of fn_A on arr1. By having fine grained control over the thread

scheduling algorithm, we were able to fix the inter-cluster dependency issue that was

present in the previous method.

Comparison of execution times between sequential program and the generated parallel

program:

DeptxofqCSE Aug - Dec 2021 Pagea67 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Figure 16: Results of Method-3 on i5 4th gen

Figure 17: Results of Method-3 on i7 9th gen

DeptxofqCSE Aug - Dec 2021 Pagea68 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Figure 18 : Results of Method-3 on i9 10th gen

Figure 19 : Comparison of execution times of Sequential vs Parallel program across

multiple CPU Architectures

DeptxofqCSE Aug - Dec 2021 Pagea69 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Figure 20: Method 3 implementation

6.1.3.2. Inferences from Method 3:

● This method provided a more fine grained control over thread scheduling allowing more

flexibility and opportunity to maximize the parallelism that can be achieved.

● This method allowed us to go a level down in terms of the abstraction as we are dealing with

threads directly in this approach.

DeptxofqCSE Aug - Dec 2021 Pagea70 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

● By controlling the scheduling of threads, the reordering of function calls could be done in a

more accurate manner so as to gain the best possible speedup through parallelism.

● Through the use of semaphores and locks, we ensure there is synchronization among shared

data

6.1.4. Method-4: Optimised Thread Scheduling for Functions using

Non Master-Worker based approach to achieve Functional

Parallelism

6.1.4.1 Implementation Details

● We begin with the generation of an Enriched Abstract Syntax Tree. This is different from a

basic Abstract Syntax Tree as it provides ways to query the AST to obtain useful

information and meaningful insights about the input source code. The generation of the

Enriched Abstract Syntax Tree is done using a tool called Clava.

● Next, querying the generated AST is done. This is done by writing code in a language called

LARA which is a language built on top of Javascript that is compatible with the Clava tool,

thereby allowing us to query the AST.

● We then perform a read-write dependency analysis to get significant information about the

input sequential source code.

● The information assimilated from the read-write dependency analysis performed above

combined with the ability to query the enriched AST is used to populate text files that will

be used by the next phase in our pipeline.

● The information about the functions that are modifying the arguments along with the

information about the arguments being modified by these functions is written into one text

file.

● The order of function calls along with information about the function name, the return type

of the function, the arguments being passed to these functions, the parameters of the

functions, the data types of both the arguments and the parameters are written into another

text file.

DeptxofqCSE Aug - Dec 2021 Pagea71 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

● The information about the functions, their return types, the line number where the function

is being called and the variable to which the returned value is being assigned (in case of a

non - void return type) is written into another text file.

● The information about the occurrences of function calls and the line numbers before which

the respective functions should finish execution is provided and written into a separate input

file.

● The next phase in this approach is the thread scheduling algorithm.

● The text files populated by the previous phase are used by the thread scheduling algorithm.

● The information from these text files is assimilated and stored in appropriate data structures.

● Variables passed as arguments to functions and return value variables contribute as variable

types whose dependency information needs to be collected and analyzed.

● Arguments to a function call: Variables passed as arguments to function calls from inside

main are taken into consideration. The read/write dependency analysis on these arguments

inside the function body is analyzed.

● If variables are passed by value, then the original variables in the main scope remain

unchanged.

● If variables are passed by reference, then further checks are made to find out if variables

passed as arguments are changed in any way inside the function body. If the variables are

merely accessed, then it is known that they remain unchanged.

● Functions can return values of any type as well. These return values can be stored in a local

variable inside the main scope.

● The next step is to find out the next point of usage of the above two types of variables. Since

we perform inter-functional parallelism, care should be taken to ensure the variables have

fully updated values, i.e., the functions should have completely finished execution. Thus, the

function calls modifying any variables or returning any variables should be fully executed

before the next point of usage of the aforementioned impacted variables.

● A point of usage of variables is referenced by the relative line number with respect to the

beginning of the main body.

● Execution of functions in Method 4 is similar to how it works in Method-3. Functions are

pushed into a thread pool, where it is executed on individual threads. In this method, we

have eliminated the use of additional master threads to keep track of changing variables

(referred to as special variables in Method 3). Instead, we use the additional information

DeptxofqCSE Aug - Dec 2021 Pagea72 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

gathered from extended data-dependency performed, giving us adequate information to

execute functions before a specified point inside our program.

● In the previous method, we ensured the completion of all functions pushed into the thread

pool by calling the “wait” or “get” method on all thread pool functions at the end of the

program. However, in this present method, we preemptively call the “wait” or “get” method

on the relevant function just before its designated point of execution (as determined and

decided by the data dependency analysis). This way, all variables meant to be updated

before their next point of usage are fully updated by a preemptive call to the corresponding

function.

● To demonstrate, consider the following example:

Input Program:

transform_A(int *a, int n);

transform_B(int *b, int m);

transform_C(int *a, int n);

Output:

In the generated parallel program, following is the sequence of events:

// no special array required to keep track of modified arrays

// no ready and wait queues required to keep track of executing

functions

// definition of find_future function which ensures execution of the

mentioned function at that point of program

futures.emplace_back(transform_A, a, n)

futures.emplace_back(transform_B, b, m)

// transform_A needs to be complete before executing transform_C (which

uses array a)

find_future(transform_A, a, n)

futures.emplace_back(transform, a, n)

Analysis:

We see that pointer "a" is used again in transform_C after transform_A makes a

modification on it. So when processing the data-dependencies, we keep a map, where we

DeptxofqCSE Aug - Dec 2021 Pagea73 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

store that transform_A needs to complete before the execution of transform_C. This can be

seen by the inclusion of the “find_future” function just before pushing the transform_C

function into the thread pool.

By using this technique, we allow the threads to be able to decide the deadline for execution,

hence eliminating the need for a master thread to monitor the threads and their execution.

● We use a map structure to store consecutive functions and their ordering local to the main

body. This way, we have a reference to all the functions. This enables us to pick the right

functions and preemptively finish its execution whenever needed.

● We handle code in the main function that are statements other than function calls. We use

the data-dependency analysis to see what sections of these statements are dependent on any

functions. If they are not dependent on any previous functions, then we align them for

execution. If they do have a dependency, we add a barrier as deemed appropriate before this

segment of code, to await completion of its dependencies.

● If a variable is being assigned the return value of a function, it is then dependent on that

function. During our data-dependency analysis, we check for such instances, and in case of

them we also deduce when the next usage of this variable happens at. We use this

information, so that there is a barrier introduced before the next usage. This ensures that

return values can be used in programming, while we continue to improve parallelization for

function calls that return any type and not only void. The implementation of return type and

return value handling is done using async programming concepts of promise and future.

DeptxofqCSE Aug - Dec 2021 Pagea74 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Figure 21: Method 4 Implementation

● Consider the following example:

Input program:

int transform_A(int a)

{

return a + 2;

}

void transform_B(int *a, int n)

{

a[0] = 4;

return;

}

int main(int argc, const char** argv)

{

int res1;

int *arr = {1,2,3,4,5,6};

DeptxofqCSE Aug - Dec 2021 Pagea75 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

int b1 = 4;

res1 = transform_A(b1);

int res2 = 0;

transform_B(arr, b1);

for(int i = 0; i < res1; i++)

{

res2 += arr[i] + 2;

}

res1 = res2 + 2;

return 0;

}

Output:

In the generated parallel program, following is the sequence of events:

// no special array required to keep track of modified arrays

// no ready and wait queues required to keep track of executing

functions

// definition of find_future function which ensures execution of the

mentioned function at that point of program

int main(int argc, const char** argv)

{

int res1;

int *arr = {1,2,3,4,5,6};

int b1 = 4;

futures.emplace_back(res1, transform_A, b1)

int res2 = 0;

futures.emplace_back(transform_B, arr, b1)

for(int i = 0; i < res1; i++)

{

find_future(transform_B, arr, b1)

res2 += arr[i] + 2;

}

res1 = res2 + 2;

return 0;

}

DeptxofqCSE Aug - Dec 2021 Pagea76 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Analysis:

● The function transform_A makes a write operation on the variable passed, but it is a pass by

value, so this has no implications on the argument passed. transform_B has passed by

reference for the array, and it makes a write on this array. So for every call of tranform_B,

we will need to set a barrier for the next usage of array passed. So in the main function, we

set a barrier before the next usage of arr inside the loop, which is shown by the call to the

find_future function. Note that, find_future called from within the loop will execute only

once at the beginning of the loop if it identifies any redundant operations. This is handled in

the internal implementation for find_future. For handling loops we check if all barriers set

for it are cleared, if they are, we assign thread and execute the loops. In the above example,

we notice that res1 used res2, so we set a barrier for that assignment, to wait for the loop to

complete execution.

● We handle selection statements, like if-else and loops, in a similar fashion. For selection

statements that have function call(s) within them, we apply the same function parallelization

technique described before. This takes care of the selection statements, and even ensures

that there are no race conditions as it is handled when the functions are being parallelized.

Every other statement inside selection statements are taken care of as stated previously.

6.1.4.2. Results

Our main aim has been to improve resource utilization of underlying hardware to the

maximum potential when executing a program, and thereby reduce the execution times. We

have measured this by comparing the execution time of the sequential program and its

parallel equivalents, generated by both the aforementioned Method 3 and Method 4.

Although execution time of a program can be used to indicate speed-up, as our goal is also

to improve the utilisation of available resources, we can not directly use only comparison of

execution time between the original sequential source code and the generated parallel source

code. In order to better understand the impact of resource utilisation, we have chosen to run

the generation of parallel code and its execution on different hardware with varying numbers

DeptxofqCSE Aug - Dec 2021 Pagea77 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

of cores and threads. We have specifically chosen an Intel i5 processor with 2 cores and an

Intel i7 processor with 12 cores. These architectures are commonly available today to the

average consumer and hence can be used as a reflection of the impact in the real world. This

allows us to showcase that the parallel version of the program has increased the utilisation

of the underlying available computational resource.

The Fig. 22 showcases the comparison of the sequential program with that of the parallel

program generated by Method 4, Master Worker based approach, on two different

architectures. The Y-axis is the ratio of execution time of sequential to parallel as we

increase the number of computations carried out in a program. We have used ratios to

represent the increase in this figure, as absolute comparisons are nearly impossible. The

sequential program execution time increases non-linearly, while the increase in parallel time

is seemingly more linear, Fig 24 shows for both methods. Fig 22 and Fig 23 can be

compared to each other. They are the result of running on two different architectures. We

notice that while in Fig 22 the speed up is 500 times almost, in Fig 23 it is 550 times. To

generate Fig 23, we used an Intel i7 architecture with 12 cores as compared to the i5

architectures with 2 cores used to generate Fig 22. This can be used to infer that, with

increased availability of hardware, we can improve the execution. This is possible as the

underlying parallel program tries to maximise the resource utilisation, and on a machine

with more cores and threads, it can achieve much higher parallelism.

The implementation of Method 4 is an evolution of some of the ideas established in Method

3 and additional design features. These changes streamline the resultant parallel code by

reducing the number of mutex locks, increasing available threads as workers and removing

all scheduling overheads. These changes along with the other described in previous sections

justify the improvement in execution time. Fig 24 indicates the impact of these changes.

Method 4 makes significant gains on Method 3 parallel code execution. As the number of

computations are increased, Method 4 continues to perform much better as a result of more

available threads and having no busy waiting for thread scheduling.

DeptxofqCSE Aug - Dec 2021 Pagea78 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Figure 22: Ratio of Sequential execution times to Parallel execution times (Hardware setup : Core

i5 - 2nd gen - 2 core machine)

DeptxofqCSE Aug - Dec 2021 Pagea79 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Figure 23: Ratio of Sequential execution times to Parallel execution times (Hardware setup : Core

i7 - 9th gen - 6 core machine)

DeptxofqCSE Aug - Dec 2021 Pagea80 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Figure 24: Comparison of execution times of Method-3 vs Method-4 (Hardware setup : Core i5 -

2nd gen - 2 core machine)

DeptxofqCSE Aug - Dec 2021 Pagea81 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Figure 25: Comparison of execution times of Method-3 vs Method-4 (Hardware setup : Core i7 -

9th gen - 6 core machine)

6.1.4.3 Inferences of Method 4:

● Elimination of two additional master threads frees up available threads in the system, which

can in turn be used for other tasks. This ensures more efficient usage of underlying hardware

without any overheads.

● Simplified generated parallel code, with the elimination of if-else constructs, ready and wait

queues, and a number of mutex locks required to keep certain data structures safe from race

conditions.

● Due to the above two improvements mentioned, the generated program is now much shorter

than the previous Method-3 approach.

● Thus, we have a significant improvement in the execution times of the newly generated

parallel program when compared to that of the previous Method-3 approach.

DeptxofqCSE Aug - Dec 2021 Pagea82 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

6.2. Program Comprehension Phase

● The technique of program comprehension we employ enables us to identify the algorithm

implemented in a specific function. If the program consists of multiple functions, then the

requirement is to identify the algorithm tag for each of these functions.

For example consider the following program:

void function_A(int* arr,const int arr_n)

{

for(int i = 0; i < arr_n-1; ++i)

{

int min = i;

for(int j = i+1;j < arr_n;++j)

{

if(arr[j] < arr[min])

{

min = j;

}

}

int temp = arr[i];

arr[i] = arr[min];

arr[min] = temp;

}

}

int function_B(int* a, int n)

{

int max = a[0];

for (int i = 1; i < n; ++i)

{

if(a[i]>max)

{

max = a[i];

}

}

return max;

}

DeptxofqCSE Aug - Dec 2021 Pagea83 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

int function_C(int* a, int n)

{

int min = a[0];

for (int i = 1; i < n; ++i)

{

if(a[i]<min)

{

min = a[i];

}

}

return min;

}

● The program comprehension stage of our pipeline will map each of the above functions to

the corresponding algorithm as identified. In this case, function_A will be mapped to “sort”,

function_B will be mapped to “max” and function_C will be mapped to “min”.

● The entire program comprehension pipeline is represented in the below flow chart

DeptxofqCSE Aug - Dec 2021 Pagea84 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Figure 26: Program Comprehension Implementation

DeptxofqCSE Aug - Dec 2021 Pagea85 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

● Our technique of program comprehension is to represent the input source code as vector

embeddings, find similarities between these embeddings to group them into similar clusters,

and additionally verify if the predicted label is accurate using a dynamic verification

process.

● To represent the programs in the form of vectors, we employ a technique of embedding. It is

a three-step process:

○ Use an extractor specifically designed for C/C++ programs to extract an Abstract

Syntax Tree of the program and break it down into smaller sections based on nodes

of the tree.

○ The nodes are then combined together to represent bigger sections, like a function

definition or a selection construct body, to create so-called path-based context

vectors.

○ These path based context vectors are then used to train a neural attention model to

better represent individual vectors for each of the smaller sections, and then we

concatenate these vectors based on weighted attention as computed by the model to

finally form the single vector representation for the function or the program.

● The vectors thus obtained give a very good representation of each of the functions in the

input program. Similar functions designed to implement the same algorithm would have

very similar vector embeddings as well. To calculate the similarity between the vector

embeddings, a simple technique such as cosine similarity can be employed.

● Based on these calculated similarity scores, it is now possible to group together similar

functions. This technique is similar to the initial stages of the K-Means clustering algorithm.

However, we do not use the concept of nearest cluster centroid to allot the cluster label to

our functions.

● We have developed a means to calculate a threshold value for each of the clusters, which

helps us in determining if a function belongs to the cluster or not. If the computed distance

between the cluster centroid and the function is greater than the pre-computed threshold,

then we skip the present cluster and perform the same comparison on the next closest

cluster, since each cluster could essentially have different pre-computed threshold values. If

a function doesn’t belong to any of the clusters based on the said comparison and allotment

technique, then the function is classified into an “Others” category.

DeptxofqCSE Aug - Dec 2021 Pagea86 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

● There is always a degree of uncertainty in the probabilistic design of the models we employ.

The “Others” category is an important aspect of our Program Comprehension pipeline. It is

important not to misclassify any of the functions, to ensure correctness and retain semantics

of the original input source code. For instance, if we classify a function sorting an array, as a

function reversing an array, this wrong label will affect the consecutive steps in our

complete pipeline of parallelisation, and generate a semantically wrong parallel program in

the end. However, it is still acceptable, if the same function sorting an array is classified into

the “Others” category. In such a case, we will not be performing intra-function

parallelisation on this particular function, however, it is safe from the wrong substitution of

a parallel version with a different algorithm.

● Thus it is important to set strict threshold values of every cluster to ensure that we retain the

semantics of the input sequential program.

● To further verify the allotted label through the clustering technique as mentioned, we make

use of a dynamic verification process. Based on the identified algorithm label, we perform

dynamic analysis on that function, verifying the output of that function for a predefined set

of inputs.

● For example, if the clustering technique returns that the label for a function is sort, we can

send in an unsorted array and verify if that function returns back a sorted array finally. This

way, we double check on the identified label and further improve the accuracy of our

complete program comprehension pipeline.

● Thus, through the use of multiple verification steps, we can be certain that this

implementation returns the correct label for each of the functions in the input program,

either the correctly identified specific label meant for an algorithm, or the “Others” label if

there was any discrepancy in the prediction.

6.3. Additional Steps

● To ensure better parallelisation decisions and ensure correctness, we can make additional

tweaks to our pipeline. Some of them are as follow:

○ If the execution times of the generated parallel program have increased, compared to

the execution times of the input sequential program, due to context switching

overheads, then we can skip parallelisation.

DeptxofqCSE Aug - Dec 2021 Pagea87 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

○ If the outputs of the parallel and sequential programs are not identical, then this

implies correctness of the original program has not been maintained. In such

scenarios, we can skip parallelisation.

DeptxofqCSE Aug - Dec 2021 Pagea88 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

7. Conclusion

● Proposed Pipeline has been implemented in its entirety

● Assumptions made in Phase 1 have been eliminated

7.1. Parallelization:

● In the parallelizing phase, we have tried out 4 different approaches, namely:

○ Inter and Intra-Function Parallelism by AST Querying and replacement with

OpenMP Directives

○ Naive Thread Scheduling using C++ concepts of Promises and Futures.

○ Optimised Thread Scheduling for Functions using Master-Worker based approach to

achieve Functional Parallelism

○ Masterless Thread scheduling for functional parallelism

● With each approach we have tried to improve the parallel code being generated with respect

to the different cases it can handle and with respect to the performance improvement that

can be achieved.

● We have made improvements to Method 3 and arrived at a new approach, Method 4.

● Method 4 removes the Ready queue and Wait queue used in Method 3, thereby nullifying

the requirement for the track and schedule Master threads.

● Method 4 handles a wider variety of cases , functions which return a value, selection and

iterative statements.

● Method 4 simplifies the generated parallel code as compared to previous methods.

● With each approach, we have been moving down a level with respect to the level of

abstraction that we are dealing with, thereby gaining a fine grained control over the different

aspects concerning parallelization.

7.2. Program Comprehension:

● We have implemented the Program Comprehension Phase of our pipeline and integrated it

with the Parallelization Phase.

● The input source code is represented as Vector Embeddings.

DeptxofqCSE Aug - Dec 2021 Pagea89 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

● The similarities between the vector embeddings of different programs is found to group

them into clusters.

● Each of the clusters correspond to a previously defined category that has a parallel version

in the backend database.

● It is tried to associate the new test program into one such cluster by using the appropriate

thresholds.

● Dynamic Verification is used to additionally verify if the predicted label is accurate.

● “Others” category is introduced to ensure correctness of the program by avoiding any

misclassification.

DeptxofqCSE Aug - Dec 2021 Pagea90 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

8. Future Work

● Refine and refactor the implemented code to gain possible improvements.

● Make the current implementations more efficient to reduce pre-processing time.

● Current implementation is a generalized technique, a possible area of future work would be

to allow for domain specific optimisations as required.

● Explore possible improvements to increase the speedup in performance of the generated

parallel code.

● Extend support to more cases wrt Program Comprehension by training on larger datasets

and defining more categories with a parallel mapping.

● Experiment with any new improvements in Program Comprehension techniques.

DeptxofqCSE Aug - Dec 2021 Pagea91 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Appendix A: Definitions, Acronyms and Abbreviations

Definitions

Parallelization - Parallelization is the act of designing a computer program or system to process

data in parallel. Normally, computer programs compute data serially: they solve one problem, and

then the next, then the next.

Program comprehension - Program comprehension is a domain of computer science concerned

with the ways software engineers maintain existing source code. The cognitive and other processes

involved are identified and studied. The results are used to develop tools and training.

Automatic Parallelization - Automatic parallelization refers to converting sequential code into

multi-threaded and/or vectorized code in order to use multiple processors simultaneously in a

shared-memory multiprocessor (SMP) machine.

Intermediate representation - An intermediate representation (IR) is the data structure or code

used internally by a compiler or virtual machine to represent source code. An IR is designed to be

conducive for further processing, such as optimization and translation.

Parallel paradigms - Defined categories to which different algorithms in the user's source code are

matched to. Each paradigm represents a set of algorithms following a common notion of execution.

A specific technique of parallelization is employed for each paradigm, providing more accurate

results and achieving generalization.

Data Dependencies - A data dependency in computer science is a situation in which a program

statement (instruction) refers to the data of a preceding statement. In compiler theory, the technique

used to discover data dependencies among statements (or instructions) is called dependence

analysis.

DeptxofqCSE Aug - Dec 2021 Pagea92 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Control Dependencies - Control dependency is a situation in which a program instruction executes

if the previous instruction evaluates in a way that allows its execution.

MultiThreading - In computer architecture, multithreading is the ability of a central processing

unit (CPU) (or a single core in a multi-core processor) to provide multiple threads of execution

concurrently, supported by the operating system. This approach differs from multiprocessing.

Multi Threaded Processor - A multithreaded processor is a processor capable of running several

software threads simultaneously.

Multicore Processors - A multi-core processor is a computer processor on a single integrated

circuit with two or more separate processing units, called cores, each of which reads and executes

program instructions. The instructions are ordinary CPU instructions (such as add, move data, and

branch) but the single processor can run instructions on separate cores at the same time, increasing

overall speed for programs that support multithreading or other parallel computing techniques.

Manufacturers typically integrate the cores onto a single integrated circuit die (known as a chip

multiprocessor or CMP) or onto multiple dies in a single chip package. The microprocessors

currently used in almost all personal computers are multi-core.

Multiprocessing - Multiprocessing is the use of two or more central processing units within a

single computer system. The term also refers to the ability of a system to support more than one

processor or the ability to allocate tasks between them.

Deadlocks - Deadlock is a situation where a set of processes are blocked off because each process

is holding a resource and waiting for another resource acquired by some other process.

Race Conditions - A race condition is an undesirable situation that occurs when a device or system

attempts to perform two or more operations at the same time, but because of the nature of the device

or system, the operations must be done in the proper sequence to be done correctly.

DeptxofqCSE Aug - Dec 2021 Pagea93 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Starvation - Starvation occurs when one or more threads in our program are blocked from gaining

access to a resource and, as a result, cannot make progress.

Starvation is the problem that occurs when high priority processes keep executing and low priority

processes get blocked for indefinite time. In heavily loaded computer systems, a steady stream of

higher-priority processes can prevent a low-priority process from ever getting the CPU.

Overhead - In computer science, overhead is any combination of excess or indirect computation

time, memory, bandwidth, or other resources that are required to perform a specific task. Overhead

can be a deciding factor in software design, with regard to structure, error correction, and feature

inclusion.

Speedup - In computer architecture, speedup is a number that measures the relative performance of

two systems processing the same problem. More technically, it is the improvement in speed of

execution of a task executed on two similar architectures with different resources.

Semantic Errors - In computer programming, a semantic error is a bug in a program that causes it

to operate incorrectly, but not to terminate abnormally. A semantic error produces unintended or

undesired output or other behaviour, although it may not immediately be recognized as such.

Run Time Errors - A runtime error is an application error that occurs during program execution.

Runtime errors are usually a category of exception that encompasses a variety of more specific error

types such as logic errors , IO errors , encoding errors , undefined object errors , division by zero

errors , and many more.

Coherency Issues - In computer architecture, cache coherence is the uniformity of shared resource

data that ends up being stored in multiple local caches. When clients in a system maintain caches of

a common memory resource, problems may arise with incoherent data, which is particularly the

case with CPUs in a multiprocessing system.

DeptxofqCSE Aug - Dec 2021 Pagea94 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

Amdahl’s Law - In computer architecture, Amdahl's law is a formula which gives the theoretical

speedup in latency of the execution of a task at fixed workload that can be expected of a system

whose resources are improved.

Acronyms and Abbreviations

AST - AST stands for Abstract Syntax Tree

In computer science, an abstract syntax tree, or just syntax tree, is a tree representation of the

abstract syntactic structure of source code written in a programming language. Each node of the tree

denotes a construct occurring in the source code.

API - API stands for Application Program Interface

An application programming interface is a computing interface that defines interactions between

multiple software or mixed hardware-software intermediaries. It defines the kinds of calls or

requests that can be made, how to make them, the data formats that should be used, the conventions

to follow, etc.

MPI -MPI stands for Message Passing Interface

Message Passing Interface is a standardized and portable message-passing standard designed by a

group of researchers from academia and industry to function on a wide variety of parallel

computing architectures.

PVM - PVM stands for Parallel Virtual Machine

Parallel Virtual Machine is a software tool for parallel networking of computers. It is designed to

allow a network of heterogeneous Unix and/or Windows machines to be used as a single distributed

parallel processor.

POSIX - POSIX stands for Portable Operating System Interface.

DeptxofqCSE Aug - Dec 2021 Pagea95 of 95

“Automated Parallelization of Source Code using Program Comprehension”

__

It is an IEEE standard designed to facilitate application portability. POSIX is an attempt by a

consortium of vendors to create a single standard version of UNIX. If they are successful, it will

make it easier to port applications between hardware platforms.

STL - STL stands for Standard Template Library

The Standard Template Library (STL) is a set of C++ template classes to provide common

programming data structures and functions such as lists, stacks, arrays, etc. It is a library of

container classes, algorithms, and iterators. It is a generalized library and so, its components are

parameterized.

GUI - GUI stands for Graphical User Interface

The graphical user interface is a form of user interface that allows users to interact with electronic

devices through graphical icons and audio indicators such as primary notation, instead of text-based

user interfaces, typed command labels or text navigation.

DeptxofqCSE Aug - Dec 2021 Pagea96 of 95

