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Abstract

Video frame prediction is one of the challenging task in machine learning. Predict-
ing high quality images is still an evolving area in the field of generative artificial
intelligence. The task for this report was to predict the 22nd frame given only the
first 11 frames of a video consisting on multiple small objects of different shapes.
In this work, for video future frame prediction we used a framework called Masked
Conditional Video Diffusion (MCVD)[10] which uses a probabilistic conditional
score-based denoising diffusion model[4], conditioned on past 12 frames in a
sliding window manner. For the image semantic segmentation, we used U-Net[8]
architecture that consists of series of down and up convolutions.

1 Literature Review

In the realm of video frame prediction, recent advancements have spurred significant interest and
innovation. Leveraging conditional score-based models, Grathwohl et al. (2020) [3] introduced a
denoising diffusion probabilistic model, forming the basis for techniques like Masked Conditional
Video Diffusion (MCVD). This approach, as employed in the present study, facilitates accurate future
frame prediction by iteratively refining noisy inputs conditioned on past observations. Additionally,
generative adversarial networks (GANs) have made notable strides in realistic video generation, with
seminal works by Vondrick et al. (2016) [11] and Villegas et al. (2017) [9] showcasing their efficacy
in synthesizing dynamic scenes. Moreover, probabilistic generative models, such as variational
autoencoders (VAEs) and autoregressive models, have been explored extensively for video frame
prediction tasks, as evidenced by Kalchbrenner et al. (2016) [5] and Babaeizadeh et al. (2017) [1],
contributing to the diverse landscape of methodologies in this domain.

On the front of image segmentation, the U-Net architecture stands as a cornerstone in the field,
initially introduced by Ronneberger et al. (2015) [8] for biomedical image segmentation. This
architecture, characterized by its expansive contracting path followed by an equally expansive
symmetric expanding path, has demonstrated remarkable efficacy across various segmentation
tasks. Concurrently, advancements in semantic segmentation with deep learning have propelled
the field forward, as showcased in the seminal work by Long et al. (2015) [6], which pioneered
the application of fully convolutional networks (FCNs) for pixel-wise segmentation. Moreover,
attention mechanisms and multi-scale feature fusion techniques have further refined segmentation
accuracy. Oktay et al. (2018) [7] proposed an attention U-Net architecture tailored for medical
imaging tasks, while Chen et al. (2017) [2] introduced DeepLab, incorporating atrous convolution
and fully connected conditional random fields to effectively aggregate multi-scale features for precise
segmentation. These advancements collectively highlight the diverse array of methodologies and
approaches driving progress in image segmentation.



2 Methodology

In our project, we aimed to tackle the challenge of video frame prediction and subsequent segmenta-
tion. This involved two main components: generating future frames from existing video sequences,
and performing image segmentation on those frames.

2.1 Future Frame Generation using MCVD

The first part of our methodology utilizes the Masked Conditional Video Diffusion (MCVD) model.
MCVD is a powerful tool for video synthesis tasks, which includes the capability to predict future
video frames. It works by learning a distribution of video data and then generating frames that are
likely to succeed the given sequence. This is particularly useful in scenarios where understanding
future states of a dynamic scene is crucial. The MCVD model uses a probabilistic approach,
conditioning on past and/or future frames, to ensure that the generated frames are not only plausible
but also coherent with the video context.

2.2 Segmentation using U-Net

After generating the future frames, the next step involves segmenting these frames to identify and
classify different objects and regions within them. For this task, we employed the UNet model, a
type of convolutional neural network that is highly effective for image segmentation tasks. UNet is
designed to work well with fewer training images and to produce precise segmentations. It operates
by using a contracting path to capture context and a symmetric expanding path that enables precise
localization. This architecture is particularly adept at dealing with the nuances in the spatial hierarchy
of images, which makes it ideal for segmenting the complex scenes depicted in the synthetically
generated video frames.

The integration of these models showcases a significant stride in video processing technology, offering
both enhanced predictive capabilities and detailed analytical insights into the generated video content.

2.3 Visualization

Below figures visualizes the feature map from the convolution network at different layers.

Figure 1: Second layer

Figure 2: Twenty-third layer

Figure 3: Thirty-fifth layer

3 Results

In this section, we present the evaluation results of our models applied in the tasks of future frame
prediction and segmentation of those frames. Our results are indicative of the effectiveness of our
approach in handling complex video data and achieving significant predictive and segmentation
accuracy.
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3.1 Segmentation Model Performance

Our UNet segmentation model demonstrated exemplary performance on the validation set, achieving
an accuracy of over 96%. This high level of accuracy underscores the model’s ability to effectively
delineate and classify various objects within the video frames, which is crucial for detailed scene
understanding in numerous practical applications.

3.2 Future Frame Prediction

We evaluated the performance of our Masked Conditional Video Diffusion (MCVD) model in
predicting future frames under different sampling scenarios:

• With 100 DDPM samplings, the model achieved a Jaccard index score of approximately
0.12. This score reflects the initial capability of our model to approximate the future state of
the video scenes, albeit with a broad margin for improvement.

• Increasing the sampling to 500 improved the Jaccard index score to around 0.20, indicating
enhanced prediction accuracy with more extensive sampling. This result suggests that
higher sampling rates may be beneficial for capturing more nuanced details in video frame
prediction.

• A reduced model size, using approximately two-thirds of the original model capacity,
resulted in a Jaccard score of about 0.06. This significant drop highlights the importance of
model complexity in capturing the dynamics of video scenes effectively.

• Our final approach with 1000 samplings achieved the best results with a Jaccard score of
0.36 on the validation dataset.

Figures 4 and 5 below displays some of the predictions. This shows some limitations of the models
as not all objects are captured. The predicted image is of a difference scale compared to the actual
image which is a limitation of our model.

Figure 4: From left to right: Predicted frame, ground truth, Segmentation Mask of the 22nd Frame

Figure 5: From left to right: Predicted Image, ground truth, Segmentation Mask of the 22nd Frame
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4 Conclusion

We have shown that the diffusion model for video future frame prediction and the U-Net model for
semantic segmentation generation works well in combination for the given dataset. We found that
generating the masks for the frames and then training the diffusion model for frame prediction could
give better results. The stength of our model is that it predicts the images without blur compared
to models. A limitation of our model is that the images generated are small and the inference time
is large to obtain clearer images. Another limitation is that the model misses some objects or adds
objects that are not part of the initial video.
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