
Project Report

CSCI-GA.3033-025
Graphics Processing Units (GPUs): Architecture and

Programming
Prof. Mohamed Zahran

Courant Institute of Mathematical Sciences
New York University

Analytical Model for Kernel Performance
Prediction

Name: Karan Kumar G
N10704874
kk5409

Analytical Model for Kernel Performance Prediction Karan Kumar G

Table of Contents

Abstract... 3
Introduction and Motivation... 4
Problem Statement and Contribution.. 6
Literature Survey..7
GPU architecture and Influencing Parameters... 9

GPU Overview...9
Influencing Parameters.. 11
1. Occupancy..11
2. Coalesced vs Uncoalesced Accesses... 15
3. Divergence... 16
4. Cache hits and misses.. 17

The Analytical Model... 18
CUDA Input Kernels..20
Results..23
Conclusion and Final Thoughts...32
Bibliography..33

Page 2

Analytical Model for Kernel Performance Prediction Karan Kumar G

Abstract
With the deceleration of Moore's Law and the attenuated progress in hardware technology, the
imperative now lies in the development of efficient and parallel software to mitigate the scarcity in
hardware capabilities. In recent years, the demand for processing vast amounts of data across diverse
domains has attained paramount significance. A considerable focus has been directed towards
advancements in Machine Learning and Deep Learning, necessitating intensive data computations.
Simultaneously, the scientific domain has experienced a substantial surge in data collection
methodologies, precipitating a necessity for intricate data calculations. Consequently, there has been
an exponential surge in the utilization and evolution of Graphics Processing Units (GPUs).

While Central Processing Units (CPUs) were hitherto the benchmark for diverse computations, their
inherent limitations in handling massive parallel applications have paved the way for General
Purpose GPUs (GPGPUs). GPU applications are now pervasive and find application across various
domains, yielding unprecedented performance enhancements and significant cost reductions due to
GPUs' superior power efficiency per computation compared to CPUs.

Nevertheless, the development of GPU code is a non-trivial undertaking. Software developers,
accustomed to learning algorithms and general software development in a sequential manner, must
invest time and effort in transitioning to parallel thinking. Consequently, planning and developing
massively parallel GPU code entail substantial cost implications. Furthermore, GPUs are applicable
only to specific problem types that exhibit notable characteristics conducive to parallelization.

Identifying a problem suitable for GPU utilization raises questions regarding the potential
performance improvement compared to traditional CPU execution without parallelism. Thus,
predicting the performance of GPU code (analogous to kernels on GPUs) becomes crucial in
quantifying potential enhancements resulting from the parallelization of software for GPUs. This
report introduces an analytical model designed to predict the execution times of GPU kernels for
unknown problem sizes without actual execution. The model considers various metrics involved in
launching kernels, including problem size, block size, and grid size configurations, enabling the
prediction of expected execution times. It is also shown that the prediction can be extended to
different GPUs, considering their own hardware characteristics. Consequently, the model instills a
degree of confidence without necessitating an in-depth understanding of kernel intricacies, their
functionality, or how they scale with increasing problem sizes. The model automates this process,
providing a streamlined approach to performance prediction. For the simplicity of the model, it offers
adequate prediction accuracy and provides good scope for future expansion to consider more niche
parameters affecting all kinds of kernels and subsequently their performance.

Page 3

Analytical Model for Kernel Performance Prediction Karan Kumar G

Introduction and Motivation
The art of programming applications for GPUs has never been more important. Every other
application now needs to be analyzed and studied before parallelising it for GPUs. This study
requires insight into the nature of the application. An application would be a suitable fit for
parallelisation if it ticks off a few standard characteristics. These include the following:

1. The application should be computation intensive. The overheads of parallelization
shouldn’t consume the majority of execution time, it should be the actual computations.

2. There must be a lot of independent computations. GPUs are suitable for massively
parallel applications. If there is no scope for parallelization, then it might be prudent not
to consider the application for parallelization at all.

3. There must be many similar computations such that parallelization is data driven, that is,
many processors execute the same kind of computations, but on different data.

4. The problem size must be large enough to see the true potential of GPUs. Small problem
sizes might be better off being executed sequentially on CPUs to counteract the
overheads.

Once the application is identified as a right candidate for parallelization, there comes another
bigger task of actually writing efficient and effective GPU code for the same. Understanding of
GPU hardware and techniques to write efficient and optimized code is necessary. This is not an
easy task by any means. To help with this process, being able to know how a particular program
behaves for different input sizes without having to thoroughly understand the program itself, or
even execute it can be very useful. It can also be very handy if we are able to understand the
nature of behavior of programs on not just one GPU, but multiple other types of GPUs with
different hardware characteristics.

To understand why prediction of execution times of GPU kernels would be helpful, we can look
at the following points:

➔ Resource Planning and Optimization:
◆ Resource Allocation: Predicting GPU execution times aids in allocating

computational resources effectively. Developers can distribute resources based on
the anticipated demands of GPU-accelerated code.

◆ Optimization Strategies: Understanding expected execution times enables
developers to prioritize optimization efforts on the most critical sections of code,
ensuring that time and resources are invested where they will yield the maximum
benefit.

Page 4

Analytical Model for Kernel Performance Prediction Karan Kumar G

➔ Cost Savings:
◆ Resource Efficiency: Predictive modeling helps avoid unnecessary resource

consumption during trial-and-error testing. This efficiency leads to cost savings
by reducing the need for extensive experimentation to achieve optimal
performance.

◆ Strategic Investments: Developers can strategically invest time and resources in
optimizing sections of code that offer the greatest potential for performance
improvement, minimizing wasteful expenditures.

➔ Time Efficiency:
◆ Accelerated Development: Predicting GPU execution times accelerates the

development cycle by providing insights early in the process. Developers can
make informed decisions and focus efforts on areas that contribute most
significantly to overall performance.

➔ Early Performance Assessment:
◆ Informed Decision-Making: Predictive models enable early assessment of the

viability of GPU acceleration for specific code segments. This information assists
developers in making informed decisions about whether to proceed with GPU
implementation or explore alternative solutions.

➔ Algorithmic and Architectural Exploration:
◆ Exploratory Analysis: Predictive models facilitate exploratory analysis of

different algorithms and architectural choices. Developers can assess the potential
impact on performance without committing to full implementations, guiding the
selection of the most promising approaches.

➔ Scalability Analysis:
◆ Optimal Problem Size: Predictive models assist in determining the optimal

problem size for efficient GPU utilization. Developers can analyze how execution
times scale with varying input sizes, aiding in the selection of problem sizes that
balance performance and resource utilization.

➔ Decision Support:
◆ Performance Trade-offs: Predictive models provide valuable decision support by

quantifying the expected performance trade-offs between GPU and CPU
implementations. Developers can choose the most appropriate solution based on
the predicted gains and associated complexities.

Page 5

Analytical Model for Kernel Performance Prediction Karan Kumar G

➔ Documentation and Reporting:
◆ Quantitative Insights: Predictive models contribute quantitative insights into the

expected performance characteristics of GPU-accelerated code. This information
is valuable for documenting expectations, reporting progress, and communicating
effectively with stakeholders throughout the development process.

In essence, predicting GPU execution times without program execution empowers developers
with foresight, allowing for strategic decision-making, efficient resource utilization, and effective
optimization efforts in GPU-accelerated software development.

Problem Statement and Contribution
In this section, the clear definition of the problem statement, the analytical model and what it
takes as input and what it outputs is provided.

Determining the absolute execution time of a kernel is not a straightforward task, as a cursory
examination of the kernel does not yield precise insights into its temporal characteristics. While
it is evident that larger input sizes generally incur lengthier execution times, deriving an exact,
quantifiable metric for execution time proves elusive. It is also known that the underlying GPU
affects the total execution time. Recent GPUs tend to get more powerful and therefore are able to
execute code faster. However, the precise prediction of execution time remains a formidable
challenge.

The primary objective in this context is to undertake an analysis of a specific kernel, particularly
a CUDA kernel, and its associated launch parameters which at least includes input size, standard
block and grid sizes. The inherent characteristics of the underlying GPU are also considered
input parameters. The aim is to furnish an estimation of execution times contingent upon
variations in problem size, alterations in kernel launch parameters (specifically, grid size and
block size), or differences in the underlying GPU hardware.

To validate the predictive accuracy of the proposed model, a series of experiments is conducted
across diverse standard kernels. The resultant predictions are juxtaposed against the actual
execution times to discern the efficacy and precision of the predictive model. Moreover, a
comprehensive investigation is undertaken to survey the landscape of available models and
techniques for GPU performance prediction. A meticulous examination of various GPU
parameters and an exploration of their impact on prediction accuracy, coupled with an

Page 6

Analytical Model for Kernel Performance Prediction Karan Kumar G

assessment of the relative feasibility of their integration into the predictive model is also
performed as part of this project.

Literature Survey
There has been previous work in trying to predict GPU performance. Amaris[1] worked on a
thesis about predicting execution times of GPU kernels. This is a very simplified model which
doesn’t take into consideration parameters such as occupancy, or coalesced and uncoalesced
memory accesses or branch prediction. It assumes every thread does equal work and begins and
finishes execution at the same time. It is inspired by a Bulk Synchronous Parallel (BSP) model
which takes into account the number of computations and memory accesses to roughly determine
the total execution times. The thesis also implements a Machine learning based model which
assumes no prior knowledge about the kernel or the GPU hardware and tries to extract features
out of multiple parameters which are recorded with the use of a dynamic profiler. These ML
models are able to overcome the shortcomings of the analytical model for a few certain kernels,
but the overall accuracy is closely matched with that of the analytical model. For the ML models,
standard practices of correlation analysis and hierarchical clustering are performed. The final
conclusion of the thesis suggests that analytical models do perform better for applications which
uniformly scale based on multiple parameters since it utilizes knowledge about impacting
parameters and how they affect the performance.

Another paper which has looked into performance prediction is the paper. In Hong et al.[2], the
onus is on determining the so-called Memory Warp Parallelism (MWP) which considers the
number of running threads and memory bandwidth. They do a thorough case study looking into
different cases and determining the corresponding MWP. Once the MWP is determined, they also
determine the number of warps that can be executed while threads are waiting for memory and
this metric is called the Computation Warp Parallelism (CWP). Together with these two
parameters and other statically fetched parameters from the PTX code, they build a complicated
model designed to predict the execution times. A technique called microbenchmarking is used to
determine the weightage for every parameter contributing to the model. This model is able to
deliver decent accuracy and can be considered as an important contribution to this field.

Another really good paper by Sara et al.[3] provides a modeling tool for GPU architectures. They
develop a work flow graph to determine the control flow patterns, loop bounds and data access
patterns which help in estimating the divergence, coalescing and bank conflicts. A unique aspect
of their work is the power to identify bottlenecks which are negatively impacting performance
and this information can be used by compilers for optimization. There has also been work which
used the intermediate version of CUDA code, the PTX representation to extract information and

Page 7

Analytical Model for Kernel Performance Prediction Karan Kumar G

accordingly predict the execution times. One such work is by Alavani [4] where all necessary
information for prediction is fetched from the intermediate representation. Their prediction
pipeline contains two phases, namely the “Delay Computation Algorithm” which calculates the
execution time of a single thread by individually adding the delay introduced by every single
instruction in the program. These delays are derived from a pre-calculated external parametric
model. Then to determine the total execution time, a so-called simulation of scheduling of
threads across different Streaming Multiprocessors (SMs) is done, along with considering kernel
launch overheads and microbenchmarking details.
Another impressive thesis work done by Singhania [5] individually addresses influencing
parameters such as uncoalesced memory access overheads, block size independence of GPU
programs and cache reuse optimization which all have impacts on the final execution time. In the
further study on each of these parameters in the coming sections, a deep dive into understanding
how they influence the execution times is performed. One of the Machine Learning approaches
out there was proposed by Wang et al. [6], where they created their own dataset with synthetic
kernels with a good spread of different kinds of instructions (which they refer to as
cross-benchmarking) to improve prediction accuracy of their ML models. They use these
predictions and extend them to determine the right memory frequency scaling for best
performance given power requirements. They use dynamic profilers to extract information out of
the kernels and use them as features in their ML models, so this isn’t exactly a means to predict
execution times without actually executing the program. The main idea behind this paper is their
application into determining frequency scaling.

Page 8

Analytical Model for Kernel Performance Prediction Karan Kumar G

GPU architecture and Influencing Parameters
In this section, we will take a look at the basics of the standard GPU architecture and understand
how parallel processing works inside a GPU. With the basics set, a deep dive into particular
parameters and how they affect the total execution time ensues.

GPU Overview

Figure 1: GPU Architecture Overview

Figure 1 shows the construction of a GPU system. Streaming Processors (SMs) are essentially
where the computation takes place. Every SM consists of multiple cores/Streaming Processors
(SPs), which are responsible for individual thread execution. Recent GPUs contain more than
100 SMs (NVIDIA [7]), with several tens of SPs inside each SM. This very large number of
hardware pieces are responsible for the massive parallelism that GPUs bring about. Inside every
SM, apart from the SPs themselves, there are other components as well. The most important ones
include:

Page 9

Analytical Model for Kernel Performance Prediction Karan Kumar G

- Registers - the lowest component in the memory hierarchy
- L1 cache/Shared Memory - The cache and the shared memory share a common hardware

memory. These occupy one level higher on the memory hierarchy than the registers.
- Warp schedulers - A warp is the elemental thread dispatch unit. These are scheduled onto

an SM using these schedulers

There resides a L2 cache outside the SMs, in between the SMs and the other memories. The
other memories include the global memory, constant memory and texture memory. Global
memory is the main memory (which is also the largest memory on a GPU). Being the largest, it
also is the slowest memory on a GPU. Constant memory is smaller but faster than global
memory. In Figure 2, from top to bottom, the size of the memory increases, but they are further
and further away from the execution units, so they are slower.

Figure 2: Memory Hierarchy on a GPU System

Relevant to the report here, it is important to know that when an application is parallelised using
a CUDA program, it is launched as a kernel. The number of threads that get created by the kernel

Page 10

Analytical Model for Kernel Performance Prediction Karan Kumar G

is something the user defines. The multiple threads are grouped into blocks, and multiple blocks
are grouped into a grid. A single kernel has a single grid. The blocks are scheduled to execute on
SMs. To maximize parallelization, we need to ensure we make use of all the available hardware
resources. This means depending on our input size for the problem, we need to ensure we have
enough threads to occupy every possible SP on every possible SM. Depending on the nature of
the kernel or the problem, this might not be possible sometimes, and it is important to identify
this to correlate to occupancy which will impact the overall execution time.

Influencing Parameters

1. Occupancy
Occupancy is defined as the ratio of active warps to the maximum number of warps that a
GPU can simultaneously execute. This definition is keeping the entire GPU in mind. We
can talk about occupancy at a SM level as well, considering individual SPs.
For example:
If there are 64 SPs inside a SM. And at a time, only 48 of those SPs have threads
executing on them. In this scenario, the occupancy is simply the ratio of 48:64, which
gives us a number of 75%. So in a way, only 75% of the total hardware available inside a
SM is being utilized. It is important to understand why there might be less than 100%
occupancy. This is due to the following reasons.

Factors that influence occupancy include “resources” available inside each SM and its
capacity to have a predetermined number of blocks assigned to it based on these
resources. These resources include the number of threads per block, the total number of
registers used by each thread, and the amount of shared memory utilized. Optimizing
these parameters helps maximize occupancy and, consequently, the overall throughput of
the GPU.

Occupancy is a critical consideration when developing GPU applications, as it directly
affects the efficiency of parallel execution. Balancing the occupancy involves finding the
right combination of thread block size, register usage, and shared memory to fully exploit
the parallel processing capabilities of the GPU. In fact this can be accurately calculated
for a given GPU knowing its hardware characteristics, and knowing the kernel
parameters. Below is an example of the said calculation.

Consider a GPU with a compute capability of 8.6. Compute capability is simply a
numeric number denoting the inherent hardware capabilities of the GPU. A higher

Page 11

Analytical Model for Kernel Performance Prediction Karan Kumar G

number generally denotes a more recent GPU with greater hardware resources and
additional features compared to a smaller number. Now with this GPU, let’s say we
launch a kernel with block size (number of threads per block) as 320. Each thread takes
up 10 registers of memory space (Local variables defined inside kernels occupy register
space, only the ones which can fit). With respect to the shared memory, an entire block
requires 1024 bytes or 1 KB of shared memory. Given these values, the occupancy can be
calculated.

Table 1: Physical limits for the given compute capability of 8.6

Page 12

Analytical Model for Kernel Performance Prediction Karan Kumar G

Table 2: Calculated occupancy data

Figure 3: Variation of occupancy with changing block size

Figure 4: Variation of occupancy with changing requirements of registers per thread

Page 13

Analytical Model for Kernel Performance Prediction Karan Kumar G

Figure 5: Variation of occupancy with changing requirements of shared memory per block

Table 1 shows the limits defined by the compute capability value. This can be used in accordance
with the input values of block size, register size per thread and shared memory requirement per
block and calculate the occupancy as is noted in Table 2. A maximum of 1280 threads can be
scheduled due to the limited resources in a SM. The important caveat is that a block cannot be
divided and scheduled across multiple SMs, the entire block must be scheduled within one SM.
Therefore if this is the case, we might have scenarios where one block might take up more than
half the space on a SM, leaving no space for another block to be scheduled. Using similar logic,
we see here that 1280 threads (or 40 warps) can be scheduled, however 48 warps are technically
possible to be scheduled inside a SM. Therefore the occupancy here is 40/48 which roughly
equates to 83%.

We can correlate the input parameters to the occupancy in Figure 3, 4 and 5. We see the
occupancy generally reduces in steps as we increase the register size requirement per thread and
shared memory per block requirement. This is expected as we have only limited resources inside
each SM and greater values mean additional blocks cannot be scheduled. Block size also matters
as can be seen in Figure 3.

Therefore we see that occupancy values are closely related to all of the above mentioned
parameters. It so happens that these parameters are taken as input into our analytical model.
Since these affect the occupancy, it directly affects the execution time as well. A higher
occupancy generally implies lower execution time, and lower occupancy implies higher
execution times. That is, the total execution time is inversely proportional to the occupancy.

Page 14

Analytical Model for Kernel Performance Prediction Karan Kumar G

There could be a lot more additional parameters affecting the execution times and may
overshadow the occupancy effect. However it can be seen if each thread takes a considerable
amount of time to execute, occupancy effect can be clearly seen. This can be seen in experiments
later on and how they affect the execution times.

2. Coalesced vs Uncoalesced Accesses
Coalesced and uncoalesced memory accesses refer to the patterns in which threads in a
GPU access memory. These terms are particularly relevant when discussing global
memory accesses CUDA. These can be defined as follows:

Coalesced memory access involves threads within a warp accessing consecutive or
contiguous memory locations in a single memory transaction. The advantage here is that
it is possible to fetch a lot of data which is used by multiple threads in one go, thereby
saving trips to the global memory. Fetching data from the global memory is a costly
affair, in fact the costliest memory operation in a GPU since the global memory comes at
the bottom of the memory hierarchy.

It is easy to see coalesced memory access in action. If each thread in a warp accesses an
element in an array, and these elements are stored consecutively in memory, it results in a
coalesced memory access pattern. We will see an example where we access memory both
in a coalesced and uncoalesced manner later in one of the test CUDA kernels used for
experimentation.

Uncoalesced memory access occurs when threads within a warp access non-contiguous
or scattered memory locations in a way that does not allow for a single, efficient memory
transaction. These lead to suboptimal memory throughput, resulting in additional memory
transactions, increasing latency and reducing overall performance.

Again it is easy to see this in action. If each thread in a warp accesses elements in an
array but the elements are not stored consecutively in memory, it results in an
uncoalesced memory access pattern. For example, assuming a two dimensional array is
stored in row major format, if we were to access the column elements of the array, then it
wouldn’t be contiguous accessing. This leads to a lot more memory accesses compared to
coalesced access.

Page 15

Analytical Model for Kernel Performance Prediction Karan Kumar G

The primary impact of this nature of memory accesses is its impact on performance and
consequent impact on the final execution time as well. Coalesced memory accesses are
crucial for achieving high memory bandwidth and optimal GPU performance.
Uncoalesced memory accesses can significantly impact the efficiency of memory
transactions and result in performance bottlenecks.

For example, if the ratio of uncoalesced vs coalesced memory transactions in a kernel
was given by r1:r2. Here it is obvious that the total execution time is largely impacted by
the r1 number of uncoalesced memory accesses. It can be roughly seen that total
execution time is directly proportional to r1.

However, including this into an analytical model to accurately predict its quantifiable
metric on the total execution time is quite challenging. It is possible to identify which
instructions in a kernel result in uncoalesced or coalesced memory accesses. The
GPUDrano[8] tool does precisely this. But just the mere number of such transactions isn’t
sufficient. Let’s say there were coalesced accesses. We cannot just assume that this means
a single memory trip to the global memory. We will have to consider the size of data
being fetched, the memory bandwidth, the cache sizes and so on to determine exactly the
number of trips to the global memory. Doing so would provide us a metric to include into
the analytical model. This is reserved for future scope of the project. Instead different
kernels showcasing coalesced and uncoalesced memory accesses are treated separately
and execution times are predicted for the individual kernels.

3. Divergence
Branch divergence is a big problem when it comes to CUDA programs. There is no clear
way to counteract the nature of divergences. By design, if there are two branches present
and we have a part of the threads executing the first branch and the rest of the threads
executing the other branch, both of these cannot execute simultaneously. One of the
branches gets executed first and then waits until the other set of threads execute the other
branch. So as can be seen the total number of instructions executed is a sum of the
instructions present in both branches. This clearly affects the executed time in the final
calculations, simply because there are more computations being performed than expected
due to the nature of the program. If we had all threads inside a warp execute only one of
the branches, then this would have resulted in lesser number of computations and thereby
lesser execution time as well.

Page 16

Analytical Model for Kernel Performance Prediction Karan Kumar G

Therefore to incorporate this influence into an analytical model, we should identify all
cases of divergence and figure out which set of threads are being affected by the
divergence and accordingly include the excess bit of computations and memory accesses
that come along with it for the said threads. This is explored in depth with an example
kernel later on in the experiments. But to see how it works consider the following bit of
kernel code

Begin kernel code
if(threadId is “even”) {
Do 5 computations
Access memory 3 times
}
if(threadId is “odd”) {
Do 10 computations
Access memory 2 times
}
End kernel code

Let’s say there are 320 threads executing this piece of kernel code. It is clear that within every
warp (there would be 10 warps in this case since warp size is 32), we have half of the threads in a
warp executing the one half of the branch while the rest execute the other branch.

Hypothetically let’s say every computation is similar and takes 5 cycles and every memory
access is also similar and takes 100 cycles. The first branch would therefore take: 5*5 + 3*100 =
325 cycles. In a similar fashion, the second branch would take a total of 250 cycles. Due to
thread divergence here, what happens here is half of the threads execute the first branch of 325
cycles. Once done, they wait till the other branch of 250 cycles is done executing. These two
branches thus execute serially in some sense and end up taking a sum of the two cycles count, in
this case it is 575 cycles. If the computations within each branch were independent of each other,
we would think that these be executed simultaneously. But this is not the case and we see this
inefficiency. This can be accounted for in the analytical model by taking the additional
computations and memory accesses count.

4. Cache hits and misses
A big part of memory transactions is the behavior of caches. Good cache management
can bring about a lot of improvements and drastically improve the performance. If we are

Page 17

Analytical Model for Kernel Performance Prediction Karan Kumar G

able to fetch data from cache, whose access latencies are much faster than those of global
memory, that will boost performance and reduce execution time considerably. So it would
be prudent to consider the effect of cache as well.

Speaking of caches, there are two types of caches. One resides inside every SM, called
the L1 cache. It might optionally share the same hardware with the shared memory. This
would be the fastest cache available and being able to get cache hits on this cache would
be the quickest way to access data (of course after being able to fetch small data from
registers). The second level of cache, called the L2 cache is available outside of the SMs.
This is larger but slower than the L1 cache.

However determining cache hits and misses would be an uphill task without having to
execute programs. Therefore we would have to run programs and use a dynamic profiler
to calculate the cache hits and misses. This statistic, if procured, can be simply subtracted
from the total global memory accesses which was calculated earlier and the time can be
adjusted accordingly. However, as stated before, this cannot be done statically.

The Analytical Model
The analytical model is primarily based on counting the number of instructions and determining
their nature and how much they contribute to the overall execution time. This simple yet
effective metric forms the crux of the whole execution time calculation.

It is possible to extract the total number of computational instructions present in a kernel code.
These simply constitute the non-memory transactional instructions. For example, floating point
additions, subtractions, divisions and so on. Every type of instruction carries with itself a certain
weight, in this case it is simply the total number of cycles these standard instructions would take
to finish execution. For example, from literature, through the use of micro-benchmarking it can
be seen that Fused Multiply Add (FMAs), additions, multiplications, divisions take
approximately 2, 24, 32, and up to 96 clock cycles (Mei et al. [9]). These values will be used as
weights when summing together the total cycles required for computational instructions.

Another basic type of instructions contributing to the execution times are the memory
transactions. These could be either load or store instructions. Since we have to deal with a
multi-layer memory hierarchy as discussed earlier, we have to be wary of the fact that the type of
memory differentiates the total number of cycles it would take to perform a memory transaction
with the said memory. It is known that accessing global memory is around 100x times slower
than accessing the shared memory (or L1 cache since they share the same hardware). Therefore

Page 18

Analytical Model for Kernel Performance Prediction Karan Kumar G

for the simulations, it can be considered that accessing shared memory takes around 5 cycles
compared to 500 cycles that would be required for accessing the global memory. Similarly it can
be considered for the L2 cache, which lies in between L1 cache/ Shared memory and the Global
memory in the memory hierarchy that it would take around 250 cycles for memory transactions
on it.

These instructions can very well be automatically detected using a kernel code parser. But for the
sake of simplicity of the project, these values were determined by hand by simply perusing
through the kernel code for multiple different kernels.

Let be the number of computations as calculated by hand. Let be the𝑛
𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠

𝑚𝑒𝑚𝐴𝑐𝑐𝑒𝑠𝑠
𝐺𝑀

total clock cycles taken by global memory accesses and be the total clock cycles𝑚𝑒𝑚𝐴𝑐𝑐𝑒𝑠𝑠
𝑆𝑀

taken by shared memory accesses. If we were not to consider the caches, we have:

1. = (+) *𝑚𝑒𝑚𝐴𝑐𝑐𝑒𝑠𝑠
𝐺𝑀

𝑙𝑜𝑎𝑑𝑠
𝐺𝑀

 𝑠𝑡𝑜𝑟𝑒𝑠
𝐺𝑀

𝑙𝑎𝑡𝑒𝑛𝑐𝑦
𝐺𝑀

2. = (+) *𝑚𝑒𝑚𝐴𝑐𝑐𝑒𝑠𝑠
𝑆𝑀

𝑙𝑜𝑎𝑑𝑠
𝑆𝑀

 𝑠𝑡𝑜𝑟𝑒𝑠
𝑆𝑀

𝑙𝑎𝑡𝑒𝑛𝑐𝑦
𝑆𝑀

We could disable caches during compilation and the above equations would suffice in such a
case. If we had to consider the effect of caches, then we would have to slightly modify the above
equation as follows:

3. = (+ - -) * + *𝑚𝑒𝑚𝐴𝑐𝑐𝑒𝑠𝑠
𝐺𝑀

𝑙𝑜𝑎𝑑𝑠
𝐺𝑀

 𝑠𝑡𝑜𝑟𝑒𝑠
𝐺𝑀

 𝐿1
ℎ𝑖𝑡𝑠

𝐿2
ℎ𝑖𝑡𝑠

𝑙𝑎𝑡𝑒𝑛𝑐𝑦
𝐺𝑀

𝐿1
ℎ𝑖𝑡𝑠

+ *𝑙𝑎𝑡𝑒𝑛𝑐𝑦
𝐿1

𝐿2
ℎ𝑖𝑡𝑠

𝑙𝑎𝑡𝑒𝑛𝑐𝑦
𝐿2

Where the loads and stores are those as calculated by hand and the latency values are as
mentioned earlier in the section.

Similarly if is the total number of threads spawned as the kernel is launched, is the𝑁
𝑡ℎ𝑟𝑒𝑎𝑑𝑠

𝐹

processor clock frequency and is the occupancy and denote a value which𝑂 𝑎𝑑𝑗𝑢𝑠𝑡𝑖𝑛𝑔𝑊𝑒𝑖𝑔ℎ𝑡
accounts for other parameters influencing the total execution time, then we can denote the total
execution time as below:

4. 𝐸. 𝑇
𝑡𝑜𝑡𝑎𝑙

 =
𝑁

𝑡ℎ𝑟𝑒𝑎𝑑𝑠
(𝑛

𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠
 + 𝑚𝑒𝑚𝐴𝑐𝑐𝑒𝑠𝑠

𝐺𝑀
 + 𝑚𝑒𝑚𝐴𝑐𝑐𝑒𝑠𝑠

𝑆𝑀
)

𝐹 * 𝑂 * 𝑎𝑑𝑗𝑢𝑠𝑡𝑖𝑛𝑔𝑊𝑒𝑖𝑔ℎ𝑡

Page 19

Analytical Model for Kernel Performance Prediction Karan Kumar G

Where occupancy is determined by the compute capability, block size, register usage and𝑂
shared memory usage as described earlier.

The is catering to all the additional parameters and weights that haven’t been𝑎𝑑𝑗𝑢𝑠𝑡𝑖𝑛𝑔𝑊𝑒𝑖𝑔ℎ𝑡
considered in the equation but previously discussed. These include divergences, uncoalesced vs
coalesced memory accesses, bank conflicts, etc. This parameter is calculated as the ratio of
estimated execution time to the actual execution time. This is only calculated once by executing
the kernel for some arbitrary input size. However this parameter can serve for other input sizes
and we wouldn’t need to execute the kernel for such instances. This behaves as a scaling factor
in addition to the other parameters defined as part of equation 4. This is quite effective when we
observe that execution times scale with increasing input sizes. The parameter remains constant
and doesn’t change for that specific GPU and problem statement, but it changes for different
kernels and different GPUs. Note that this parameter alone wouldn’t suffice since the correlation
of execution times to the input size is not always simple. The understanding of other contributing
factors such as both memory and non-memory computations and occupancy provide the
necessary modeling to accurately determine the execution times.

It is important to note that this analytical model can be used on any GPU platform. The only
things changing would be the hardware characteristics of the GPU, which may change the
latency values and clock rate, but the primary scaling factors depend on the nature of the
algorithm. The constants which determine the actual execution time is just taken into account by
the adjusting factor. Therefore for simplicity, experimentation has been performed on a single
GPU across 4 different kernels of unique computations, to show a metric for accuracy.

CUDA Input Kernels
With the analytical model defined in the previous section, the prediction of execution times for
multiple kernels was performed. The 4 different kernels included are:

1. Matrix Vector Multiplication: This is a simple CUDA program to multiply a N * N
dimensional matrix containing floating point numbers with a vector of dimensions N. The
CUDA kernel itself uses N threads to compute the final result, where each thread
computes the corresponding element on the product vector.

Page 20

Analytical Model for Kernel Performance Prediction Karan Kumar G

Figure 6: Matrix-Vector multiplication of size 3*3

In Figure 6, we can see the multiplication in action. Thread 1 would be used to compute
the first element of the resultant vector, thread 2 for the second one and thread 3 for the
third element. In each thread, the computation involves multiplication and addition of the
elements, which are essentially fused add multiply(FMA) operations. Each operation can
be considered to take 2 clock cycles. The value of the model parameters for this problem
statement and for the others can be seen in table 3.

2. Dot Product: Here, the dot product of two vectors is performed. We have one thread to
compute for every multiplication of two elements from the two vectors and we use a
divide and conquer technique to add up these values to generate the final dot product
itself. Importantly, shared memory has been used here and it is clear from this example
the differentiation of shared memory vs global memory accesses and the changes in
latency that this incurs.

3. Vector Addition: A simple operation of adding two N-dimensional vectors to generate a
N-dimensional vector. With every thread computing every element, there would be N
threads spawned in total, contributing to N additions of floating point numbers in the
process.

4. Matrix Addition: This is an extension of vector addition to matrix addition, where we
use N*N number of threads to compute for every N*N element in the final matrix. Here,
it is ensured to access the memory in a coalesced manner to improve performance. The
model is able to pick up on this as well and generate accurate results.

Page 21

Analytical Model for Kernel Performance Prediction Karan Kumar G

Influencing
Factors

Matrix-Vector
Multiplication

Dot Product Vector Addition Matrix Addition

𝑛
𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠

2 * 𝑁 96 * 1 24 * 1 24 * 1

𝑙𝑜𝑎𝑑𝑠
𝐺𝑀

2 * 𝑁 2 2 2

𝑠𝑡𝑜𝑟𝑒𝑠
𝐺𝑀

1 1/(𝐺𝑟𝑖𝑑 𝑆𝑖𝑧𝑒) 1 1

𝑙𝑜𝑎𝑑𝑠
𝑆𝑀

- 𝑙𝑜𝑔
2
(𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒) - -

𝑠𝑡𝑜𝑟𝑒𝑠
𝑆𝑀

- 𝑙𝑜𝑔
2
(𝐵𝑙𝑜𝑐𝑘 𝑆𝑖𝑧𝑒) - -

𝑁
𝑡ℎ𝑟𝑒𝑎𝑑𝑠

𝑁 𝑁 𝑁 𝑁2

Table 3: Parameter values for every kernel function

Since the inclusion of the effect of caches requires the program to be actually executed for every
input size, it hasn’t been taken into consideration. Every kernel was compiled keeping L1 cache
disabled using the flag -Xptxas -dlcm=cg. All optimisations have also been turned off by setting
the -O parameter to zero.

Page 22

Analytical Model for Kernel Performance Prediction Karan Kumar G

Results
The experiments were run on the CUDA3 CIMS machine with the following properties:

Figure 7: GPU Testbed characteristics

As can be seen, the machine is of a 7.0 compute capability with 145500 KHz clock rate. These
values are used to compute the occupancy values as well as the final execution times.

1. Matrix-Vector Multiplication Results
The values reported can be seen in Table 4. The Mean Absolute Error (MAE) was
calculated to be 16.37 and the Root Mean Squared Error (RMSE) was calculated to be
24.9. Note that the times were calculated in ms. The most important metric to take away

Page 23

Analytical Model for Kernel Performance Prediction Karan Kumar G

from here is that the predicted values deviated by less than 3.52% compared to the actual
execution times.

Table 4: Matrix-Vector Multiplication Execution Times

Page 24

Input Size (N)

Actual
Execution

Time (in ms)

Predicted
Execution
time (in ms)

Ratio of Actual to
Predicted Execution

Time

1024 1.351 1.253382165 0.9277440153

3072 11.185 11.27677658 1.008205327

5120 31.723 31.32234444 0.9873701869

7168 58.963 61.39008574 1.04116286

9216 101.754 101.4800005 0.997307236

11264 151.289 151.5920887 1.002003376

13312 210.26 211.7263503 1.006973986

15360 260.85 281.8827854 1.080631725

17408 410.27 362.061394 0.8824954151

19456 469.544 452.2621759 0.9631944523

21504 590.87 552.4851314 0.935036694

23552 666.611 662.7302602 0.9941784042

25600 772.193 782.9975625 1.013992049

27648 880.77 913.2870383 1.036918876

29696 992.858 1053.598688 1.061177618

31744 1171.141 1203.93251 1.027999626

32768 1290.45 1282.857737 0.9941165768

Analytical Model for Kernel Performance Prediction Karan Kumar G

Figure 8: Side to Side Comparison of Actual vs Predicted Execution Times for Matrix-Vector
Multiplication

Figure 9: Execution time trends for Matrix-Vector Multiplication

2. Dot Product Results
The values reported can be seen in Table 4. The Mean Absolute Error (MAE) was
calculated to be 58.719 and the Root Mean Squared Error (RMSE) was calculated to be
78.1. Note that the times were calculated in ms. The most important metric to take away

Page 25

Analytical Model for Kernel Performance Prediction Karan Kumar G

from here is that the predicted values deviated by less than 8.75% compared to the actual
execution times.

Table 5: Dot Product Execution Times

Page 26

Input Size (N)
Actual Execution
Time (in ms)

Predicted
Execution
time (in ms)

Ratio of Actual to
Predicted Execution

Time

100000000 121.875 131.8401968 1.081765718

150000000 158.758 197.760277 1.245671254

200000000 265.142 263.6803572 0.9944873206

250000000 355.15 329.6004373 0.9280597982

300000000 556.109 395.5205175 0.7112284058

350000000 528.565 461.4405977 0.873006343

400000000 675.105 527.3606778 0.7811535655

450000000 588.392 593.280758 1.008308675

500000000 686.736 659.2008382 0.9599042983

550000000 719.41 725.1209183 1.007938336

600000000 853.733 791.0409985 0.9265672037

650000000 956.576 856.9610787 0.8958630351

700000000 735.628 922.8811588 1.254548711

750000000 923.623 988.801239 1.070568012

800000000 988.11 1054.721319 1.067412858

850000000 1066.942 1120.641399 1.050330195

900000000 1075.672 1186.56148 1.103088562

950000000 1248.27 1252.48156 1.003373917

1000000000 1362.149 1318.40164 0.9678835721

1050000000 1338.466 1384.32172 1.034259907

1100000000 1445.738 1450.2418 1.003115226

1150000000 1469.911 1516.16188 1.031465089

Analytical Model for Kernel Performance Prediction Karan Kumar G

Figure 10: Side to Side Comparison of Actual vs Predicted Execution Times for Dot Product

Figure 11: Execution time trends for Matrix-Vector Multiplication

3. Vector Addition Results
The values reported can be seen in Table 4. The Mean Absolute Error (MAE) was
calculated to be 8.28% and the Root Mean Squared Error (RMSE) was calculated to be
11.96%. Note that the times were calculated in ms. The most important metric to take

Page 27

Analytical Model for Kernel Performance Prediction Karan Kumar G

away from here is that the predicted values deviated by less than 5.03% compared to the
actual execution times.

Table 6: Vector Addition Execution Times

Page 28

Input Size (N)
Actual Execution
Time (in ms)

Predicted
Execution time (in

ms)

Ratio of Actual to
Predicted Execution

Time

10000000 24.5162 24.20043147 0.9871200051

15000000 37.9632 36.3006472 0.9562061998

20000000 48.2768 48.40086294 1.002569825

25000000 58.667 60.50107867 1.031262527

30000000 72.6608 72.60129441 0.9991810496

35000000 80.7094 84.70151014 1.049462766

40000000 91.4772 96.80172588 1.058206043

45000000 109.6958 108.9019416 0.9927630922

50000000 116.1388 121.0021573 1.041875388

55000000 124.1798 133.1023731 1.071852049

60000000 131.7566 145.2025888 1.102051729

65000000 162.2946 157.3028046 0.9692423812

70000000 164.4648 169.4030203 1.030026001

75000000 211.817 181.503236 0.8568870111

80000000 211.6656 193.6034518 0.9146665862

85000000 217.141 205.7036675 0.9473276235

90000000 213.6954 217.8038832 1.019225885

95000000 255.9418 229.904099 0.898267102

100000000 225.791 242.0043147 1.071806736

Analytical Model for Kernel Performance Prediction Karan Kumar G

Figure 12: Side to Side Comparison of Actual vs Predicted Execution Times for Vector Addition

Figure 13: Execution time trends for Vector Addition

4. Matrix Addition Results
The values reported can be seen in Table 4. The Mean Absolute Error (MAE) was
calculated to be 6.96% and the Root Mean Squared Error (RMSE) was calculated to be
8.73%. Note that the times were calculated in ms. The most important metric to take

Page 29

Analytical Model for Kernel Performance Prediction Karan Kumar G

away from here is that the predicted values deviated by less than 10.3% compared to the
actual execution times.

Table 7: Matrix Addition Execution Times

Page 30

Input Size (N)
Actual Execution Time (in

ms)
Predicted Execution

time (in ms)

Ratio of Actual to
Predicted Execution

Time

1000 4.5966 1.581049168 0.3439605726

2000 8.9644 6.324196673 0.7054790809

3000 19.8556 14.22944251 0.7166463121

4000 31.9958 25.29678669 0.7906283541

5000 43.5154 39.52622921 0.9083273785

6000 66.3614 56.91777006 0.8576939313

7000 82.8394 77.47140924 0.9352000285

8000 107.5648 101.1871468 0.9407087334

9000 125.315 128.0649826 1.021944561

10000 154.418 158.1049168 1.023876211

11000 191.8944 191.3069494 0.9969386775

12000 226.9964 227.6710802 1.002972207

13000 259.5502 267.1973094 1.02946293

14000 302.1154 309.885637 1.025719434

15000 341.0948 355.7360628 1.042924321

16000 395.661 404.7485871 1.022968114

17000 455.1898 456.9232096 1.003808103

18000 502.2988 512.2599305 1.019831086

19000 549.2808 570.7587497 1.039101949

20000 616.3246 632.4196673 1.026114595

Analytical Model for Kernel Performance Prediction Karan Kumar G

Figure 14: Side to Side Comparison of Actual vs Predicted Execution Times for Matrix Addition

Figure 15: Execution time trends for Matrix Addition

Page 31

Analytical Model for Kernel Performance Prediction Karan Kumar G

Error metric Matrix Vector
Multiplication

Dot Product Vector Addition Matrix Addition

Mean Absolute Error
(MAE) (in ms)

16.37 58.18 8.28 6.96

Root Mean Squared
Error (RMSE) (in
ms^2)

24.92 78.09 11.96 8.73

Deviation (in
percentage)

3.51 8.74 5.03 10.3

Table 8: Error Metrics for predictions on all kernels

Combining all results, it can be seen that the percentage deviation of the predicted execution
times with respect to the actual execution times comes under 6.9%. This error creeps in due to
the nondeterministic nature of the actual execution times itself, where a lot of dynamic
parameters are at play. However, for the simplicity of the model, it provides a good estimate.
This can be very well extended to more kernels and across different GPU systems.

Conclusion and Final Thoughts
In this project, an analytical model for estimating GPU kernel execution times has been
proposed. It has been verified against 4 standard kernel functions and the relevant data has been
collected and analyzed. Machine learning models require data to estimate a prediction function.
In this case, the data required are the execution times of the input program across different input
sizes. However, we cannot be expected to execute the program on multiple different inputs and
gather execution times, that defeats the purpose of trying to estimate the execution times without
actually executing the programs themselves. Thus, in this way, the analytical model comes very
handy since we only execute the program once to estimate the adjusting factor value. With that
value, we are able to correctly relate how the execution time of a program varies with varying
input size, as can be seen from the experimentation and results. Thus, this approach is suitable
for an analytical model which utilizes some degree of GPU knowledge. A machine learning
model would just assume the underlying function as a black box and wouldn’t even care to
understand that it is a GPU kernel in execution.

However, there are other techniques as seen from literature surveys which can be consolidated
and extended to support machine learning based approaches. With respect to the model proposed,

Page 32

Analytical Model for Kernel Performance Prediction Karan Kumar G

there still is a lot of scope for improvement. The elimination of the adjusting factor would
require taking into account a lot more influencing factors and use the techniques of
micro-benchmarking to correctly estimate the relevant weights for the parameters.

Bibliography
1. Gonzalez, Marcos Tulio Amarez. “Performance Prediction of Applications Executed on

GPUs Using a Simple Analytical Model and Machine Learning Techniques.” Institute of
Mathematics and Statistics of the University of Sao Paulo, 2018.

2. Sunpyo Hong and Hyesoon Kim. 2009. An analytical model for a GPU architecture with
memory-level and thread-level parallelism awareness. In Proceedings of the 36th annual
international symposium on Computer architecture (ISCA '09). Association for
Computing Machinery, New York, NY, USA, 152–163.
https://doi.org/10.1145/1555754.1555775

3. Sara S. Baghsorkhi, Matthieu Delahaye, Sanjay J. Patel, William D. Gropp, and Wen-mei
W. Hwu. 2010. An adaptive performance modeling tool for GPU architectures. In
Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP '10). Association for Computing Machinery, New York,
NY, USA, 105–114. https://doi.org/10.1145/1693453.1693470

4. G. Alavani, K. Varma and S. Sarkar, "Predicting Execution Time of CUDA Kernel Using
Static Analysis," 2018 IEEE Intl Conf on Parallel & Distributed Processing with
Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing,
Social Computing & Networking, Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom), Melbourne, VIC, Australia, 2018, pp.
948-955, doi: 10.1109/BDCloud.2018.00139.

5. Singhania, Nimit. “Static Analysis for GPU Program Performance” University of
Pennsylvania, 2018.

6. Qiang Wang, Chengjian Liu, and Xiaowen Chu. 2020. GPGPU performance estimation
for frequency scaling using cross-benchmarking. In Proceedings of the 13th Annual
Workshop on General Purpose Processing using Graphics Processing Unit (GPGPU '20).
Association for Computing Machinery, New York, NY, USA, 31–40.
https://doi.org/10.1145/3366428.3380767

7. “NVIDIA H100 Tensor Core GPU Architecture Overview.” NVIDIA,
resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper.

8. Rajeev Alur, Joseph Devietti, Omar S. Navarro Leija and Nimit Singhania. GPUDrano:
Detecting Uncoalesced Accesses in GPU Programs. In Proceedings of the 29th

Page 33

https://doi.org/10.1145/1555754.1555775
https://doi.org/10.1145/1693453.1693470
https://doi.org/10.1145/3366428.3380767

Analytical Model for Kernel Performance Prediction Karan Kumar G

International Conference on Computer-Aided Verification, CAV 2017, pages 507-525.
Springer, 2017.

9. Mei, X., Zhao, K., Liu, C., Chu, X. (2014). Benchmarking the Memory Hierarchy of
Modern GPUs. In: Hsu, CH., Shi, X., Salapura, V. (eds) Network and Parallel
Computing. NPC 2014. Lecture Notes in Computer Science, vol 8707. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-662-44917-2_13

Page 34

https://doi.org/10.1007/978-3-662-44917-2_13

